(二)变形梯度和相对变形梯度

1. 变形梯度

a. 运动变形前,参考构型中某代表性物质点 A 邻域内的线元:
d X ⃗ = d X A G ⃗ A = d x i c ⃗ i d\vec{X}=dX^A\vec{G}_A=dx^i\vec{c}_i dX =dXAG A=dxic i
b. 运动变形后,线元 d X ⃗ d\vec{X} dX 映射为当前构型中的线元 d x ⃗ d\vec{x} dx
d x ⃗ = d x i g ⃗ i = d X A C ⃗ A d\vec{x}=dx^i\vec{g}_i=dX^A\vec{C}_A dx =dxig i=dXAC A
如下图所示:

根据映射关系:
x ⃗ = x ⃗ ( X 1 , X 2 , X 3 , t ) \vec{x}=\vec{x}(X^1,X^2,X^3,t) x =x (X1,X2,X3,t)
有:
d x ⃗ = ∂ x ⃗ ∂ X A d X A = ( ∂ x ⃗ ∂ X A ⊗ G ⃗ A ) ⋅ d X ⃗ ≜ F ⋅ d X ⃗ d\vec{x}=\dfrac{\partial \vec{x}}{\partial X^A}dX^A=\left(\dfrac{\partial \vec{x}}{\partial X^A}\otimes\vec{G}^A\right)\cdot d\vec{X}\triangleq \bold F\cdot d\vec{X} dx =XAx dXA=(XAx G A)dX FdX
F \bold F F 称作 变形梯度 。可见,变形梯度(仿射量)实现了A点邻域内变形前线元到变形后线元的线性映射。

根据变形梯度的定义与不同坐标系间基的关系,有
F ≜ ∂ x ⃗ ∂ X A ⊗ G ⃗ A ≜ x ⃗ ▽ 0     = C ⃗ A ⊗ G ⃗ A     = F ∙ A B G ⃗ B ⊗ G ⃗ A     = x , A i g ⃗ i ⊗ G ⃗ A = g ⃗ i ⊗ c ⃗   i     = F ∙ i j c ⃗ j ⊗ c ⃗   i \begin{aligned} &\bold{F}\triangleq\dfrac{\partial \vec{x}}{\partial X^A}\otimes\vec{G}^A\triangleq\vec{x}\triangledown_0\\\\ &\ \ \ =\vec{C}_A\otimes\vec{G}^A\\\\ &\ \ \ =F^B_{\bullet A}\vec{G}_B\otimes\vec{G}^A\\\\ &\ \ \ =x^i_{,A}\vec{g}_i\otimes\vec{G}^A=\vec{g}_i\otimes\vec{c}\ ^i\\\\ &\ \ \ =F^j_{\bullet i}\vec{c}_j\otimes\vec{c}\ ^i \end{aligned} FXAx G Ax 0   =C AG A   =FABG BG A   =x,Aig iG A=g ic  i   =Fijc jc  i
由上面的关系可知:

  • 变形梯度可写作随体坐标系与固定坐标系基矢的张量积;
  • 变形梯度在物质坐标系下的混合分量 F ∙ A B F^B_{\bullet A} FAB 也即为物质坐标系与随体坐标系 { X A , t } \{X^A,t\} {XA,t} 间的坐标转换系数 F ∙ A B F^B_{\bullet A} FAB
  • 变形梯度在空间坐标系下的混合分量 F ∙ i j F^j_{\bullet i} Fij 也即为空间坐标系与随体坐标系 { x i , t 0 } \{x^i,t_0\} {xi,t0} 间的坐标转换系数 F ∙ i j F^j_{\bullet i} Fij

另外,变形梯度张量也可由位移在物质坐标系下的右梯度进行表示由于
X ⃗ + u ⃗ = x ⃗ + b ⃗ \vec{X}+\vec{u}=\vec{x}+\vec{b} X +u =x +b
式中, b ⃗ \vec{b} b 为参考坐标系与空间坐标系原点的位矢差,是常矢。则
F = ∂ x ⃗ ∂ X A ⊗ G ⃗ A = ∂ ∂ X A ( X ⃗ + u ⃗ ) ⊗ G ⃗ A = I + ∂ u ⃗ ∂ X A ⊗ G ⃗ A = I + u ⃗ ▽ 0 \bold F =\dfrac{\partial \vec{x}}{\partial X^A}\otimes\vec{G}^A =\dfrac{\partial }{\partial X^A}(\vec{X}+\vec{u})\otimes\vec{G}^A =\bold I+\dfrac{\partial \vec{u}}{\partial X^A}\otimes\vec{G}^A=\bold I +\vec{u}\triangledown_0 F=XAx G A=XA(X +u )G A=I+XAu G A=I+u 0

变形梯度的行列式:
J ≜ d e t ( F ) = d e t ( [ F ∙ A B ] ) = d e t ( [ g i B ] [ x , A i ] ) = d e t ( [ x , A i ] ) ∣ G ⃗ 1 ⋅ g ⃗ 1 G ⃗ 1 ⋅ g ⃗ 2 G ⃗ 1 ⋅ g ⃗ 3 G ⃗ 2 ⋅ g ⃗ 1 G ⃗ 2 ⋅ g ⃗ 2 G ⃗ 2 ⋅ g ⃗ 3 G ⃗ 3 ⋅ g ⃗ 1 G ⃗ 3 ⋅ g ⃗ 2 G ⃗ 3 ⋅ g ⃗ 3 ∣   = d e t ( [ x , A i ] ) [ G ⃗ 1 ⋅ ( G ⃗ 2 × G ⃗ 3 ) ] [ g ⃗ 1 ⋅ ( g ⃗ 2 × g ⃗ 3 ) ] = d e t ( [ x , A i ] ) g G ≠ 0 \mathscr{J}\triangleq det(\bold F)=det([F^B_{\bullet A}])=det([g^B_{i}][x^i_{,A}])=det([x^i_{,A}]) \begin{vmatrix} \vec{G}^1\cdot\vec{g}_1 & \vec{G}^1\cdot\vec{g}_2 & \vec{G}^1\cdot\vec{g}_3\\\\ \vec{G}^2\cdot\vec{g}_1 & \vec{G}^2\cdot\vec{g}_2 & \vec{G}^2\cdot\vec{g}_3\\\\ \vec{G}^3\cdot\vec{g}_1 & \vec{G}^3\cdot\vec{g}_2 & \vec{G}^3\cdot\vec{g}_3 \end{vmatrix}\\\ \\ =det([x^i_{,A}])[\vec{G}^1\cdot(\vec{G}^2\times\vec{G}^3)][\vec{g}_1\cdot(\vec{g}_2\times\vec{g}_3)]=det([x^i_{,A}])\sqrt{\dfrac{g}{G}}\ne0 Jdet(F)=det([FAB])=det([giB][x,Ai])=det([x,Ai]) G 1g 1G 2g 1G 3g 1G 1g 2G 2g 2G 3g 2G 1g 3G 2g 3G 3g 3  =det([x,Ai])[G 1(G 2×G 3)][g 1(g 2×g 3)]=det([x,Ai])Gg =0
其中,
G = G ⃗ 1 ⋅ ( G ⃗ 2 × G ⃗ 3 ) ; g = g ⃗ 1 ⋅ ( g ⃗ 2 × g ⃗ 3 ) G=\vec{G}^1\cdot(\vec{G}^2\times\vec{G}^3);g=\vec{g}_1\cdot(\vec{g}_2\times\vec{g}_3) G=G 1(G 2×G 3)g=g 1(g 2×g 3)
或者
C = d e t ( [ C A B ] ) = d e t ( [ F ∙ A M ] T [ G M N ] [ F ∙ B N ] ) = d e t 2 ( F ) G C=det([{C}_{AB}])=det([F^M_{\bullet A}]^T[G_{MN}][F^N_{\bullet B}])=det^2(\bold F)G C=det([CAB])=det([FAM]T[GMN][FBN])=det2(F)G

d e t 2 ( F ) = C G ≠ 0 det^2(\bold F)=\dfrac{C}{G}\ne0 det2(F)=GC=0
变形梯度的行列式不为零,说明变形梯度是正则仿射量

2. 变形梯度的逆

根据映射关系:
X ⃗ = X ⃗ ( x 1 , x 2 , x 3 , t ) \vec{X}=\vec{X}(x^1,x^2,x^3,t) X =X (x1,x2,x3,t)
得:
d X ⃗ = ∂ X ⃗ ∂ x i d x i = ( ∂ X ⃗ ∂ x i ⊗ g ⃗   i ) ⋅ d x ⃗ ≜ F − 1 ⋅ d x ⃗ d\vec{X}=\dfrac{\partial \vec{X}}{\partial x^i}d{x}^i=\left(\dfrac{\partial \vec{X}}{\partial x^i}\otimes\vec{g}\ ^i\right)\cdot d\vec{x}\triangleq \overset{-1}{\bold F}\cdot d\vec{x} dX =xiX dxi=(xiX g  i)dx F1dx
根据定义:
F − 1 ≜ ∂ X ⃗ ∂ x i ⊗ g ⃗   i ≜ X ⃗ ▽     = c ⃗ i ⊗ g ⃗ i     = F − 1   , i j g ⃗ j ⊗ g ⃗ i     = X , i A G ⃗ A ⊗ g ⃗ i = G ⃗ A ⊗ C ⃗ A     = F − 1   , A B C ⃗ B ⊗ C ⃗ A     = ∂ ∂ x i ( x ⃗ − u ⃗ ) ⊗ g ⃗ i     = I − ∂ u ⃗ ∂ x i ⊗ g ⃗ i = I − u ⃗ ▽ \begin{aligned} &\overset{-1}{\bold F}\triangleq \dfrac{\partial \vec{X}}{\partial x^i}\otimes\vec{g}\ ^i\triangleq\vec{X}\triangledown\\\\ &\ \ \ =\vec c_i\otimes\vec{g}^i\\\\ &\ \ \ =\overset{-1}{F}\ ^{j}_{,i}\vec{g}_j\otimes\vec{g}^i\\\\ &\ \ \ =X^A_{,i}\vec{G}_A\otimes\vec{g}^i=\vec{G}_A\otimes\vec{C}^A\\\\ &\ \ \ =\overset{-1}{F}\ ^{B}_{,A}\vec{C}_B\otimes\vec{C}^A \\\\ &\ \ \ =\dfrac{\partial }{\partial x^i}(\vec{x}-\vec{u})\otimes\vec{g}^i \\\\ &\ \ \ =\bold I-\dfrac{\partial \vec{u}}{\partial x^i}\otimes\vec{g}^i =\bold I-\vec{u}\triangledown \end{aligned} F1xiX g  iX    =c ig i   =F1 ,ijg jg i   =X,iAG Ag i=G AC A   =F1 ,ABC BC A   =xi(x u )g i   =Ixiu g i=Iu
又因为:
F − 1 ⋅ F = ( c ⃗ i ⊗ g ⃗ i ) ⋅ ( g ⃗ j ⊗ c ⃗   j ) = δ j i c ⃗ i ⊗ c ⃗   j = I \overset{-1}{\bold F}\cdot\bold{F}=(\vec c_i\otimes\vec{g}^i)\cdot(\vec{g}_j\otimes\vec{c}\ ^j)=\delta^i_j\vec c_i\otimes\vec{c}\ ^j=\bold I F1F=(c ig i)(g jc  j)=δjic ic  j=I
因此, F − 1 \overset{-1}{\bold F} F1 为变形梯度仿射量的逆

3. 相对变形梯度

4. 两点张量

定义:若某张量的分量或张量基涉及两个不互相独立的坐标系,便称之为 两点张量

比如,变形梯度或其逆为两点张量的实例:
F = F ∙ A B G ⃗ B ⊗ G ⃗ A \bold F=F^B_{\bullet A}\vec{G}_B\otimes\vec{G}^A F=FABG BG A
上述形式上似乎只与物质坐标系相关,但注意到:
F ∙ A B = X , i A g B i = ∂ X A ( x ⃗ , t ) ∂ x i ∂ x i ( X ⃗ , t ) ∂ X B F^B_{\bullet A} =X^A_{,i}g^i_B =\dfrac{\partial X^A(\vec{x},t)}{\partial x^i}\dfrac{\partial x^i(\vec{X},t)}{\partial X^B} FAB=X,iAgBi=xiXA(x ,t)XBxi(X ,t)
说明其分量涉及物质坐标系与空间坐标系。

最后尤其指出:两点张量关于坐标的导数应当是全导数。具体来说,若张量 Ψ \bold \Psi Ψ 是建立在坐标系 { X ⃗ } \{\vec{X}\} {X } { x ⃗ } \{\vec{x}\} {x } 上的两点张量,则
d Ψ d X A = ∂ Ψ ∂ X A + ∂ Ψ ∂ x i ∂ x i ∂ X A \dfrac{d\bold\Psi}{d X^A} =\dfrac{\partial\bold\Psi}{\partial X^A}+\dfrac{\partial\bold\Psi}{\partial x^i}\dfrac{\partial x^i}{\partial X^A} dXAdΨ=XAΨ+xiΨXAxi

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值