(四)应变度量

1. Hill 应变度量 与 Seth 应变度量

无论是立足于参考构型还是当前构型,某一代表性物质点领域内的变形(某方向的长度比、任意两方向夹角的变化、面元体元的改变)均可通过主长度比/主方向加以描述。因此,任何能够确定长度比/主方向的张量均可作为应变的度量,来描述代表性物质点邻域内的变形状态。基于上述观点, Rodney Hill 于 1968 年定义了 通类的 应变度量函数(应变张量的主轴表示):

  • Lagrange 描述:
    E H i l l = E = ∑ α = 1 3 f ( λ α ) L ⃗ α ⊗ L ⃗ α \bold{E}_{Hill}=\bold{E}=\sum_{\alpha =1}^3f(\lambda_\alpha)\vec{L}_\alpha\otimes\vec{L}_\alpha EHill=E=α=13f(λα)L αL α
  • Euler 描述:
    e H i l l = e = ∑ α = 1 3 f ( λ α ) l ⃗ α ⊗ l ⃗ α \bold{e}_{Hill}=\bold{e}=\sum_{\alpha =1}^3f(\lambda_\alpha)\vec{l}_\alpha\otimes\vec{l}_\alpha eHill=e=α=13f(λα)l αl α

其中, f ( λ ) f(\lambda) f(λ) 为单调可微的标量函数,且满足:

(1) 主伸长比为1(无变形)时,应变为零
f ( 1 ) = 0 f(1)=0 f(1)=0
(2) 应变是严格单调递增的函数(较大的主长度比对应更大的应变)
f ′ ( λ ) > 0 f'(\lambda)>0 f(λ)>0
(3) 小变形条件下,Hill 应变 可退化为已有的 柯西应变
f ′ ( 1 ) = 1 f'(1)=1 f(1)=1

对条件(3)作如下说明:

1822 年 Cauchy 提出在小变形条件下,可用熟知的六个柯西应变分量来度量材料的线段变形与角度变形,又
λ = 1 + ε \lambda=1+\varepsilon λ=1+ε
其中,柯西主应变 ε \varepsilon ε 为一小量,那么
f ( λ ) = f ( 1 + ε ) = f ( 1 ) + f ′ ( 1 ) ε + o ( ε 2 ) ≈ f ′ ( 1 ) ε f(\lambda)=f(1+\varepsilon)=f(1)+f'(1)\varepsilon+o(\varepsilon^2)\approx f'(1)\varepsilon f(λ)=f(1+ε)=f(1)+f(1)ε+o(ε2)f(1)ε
式中运用了无变形无应变的条件。可见当且仅当 f ′ ( 1 ) = 1 f'(1)=1 f(1)=1
f ( λ ) ≈ ε f(\lambda)\approx\varepsilon f(λ)ε

从Hill应变度量的定义来看, E H i l l \bold{E}_{Hill} EHill e H i l l \bold{e}_{Hill} eHill 均为对称张量,且二者满足:
E = R T ⋅ e ⋅ R \bold E = \bold{R^T\cdot e\cdot R} E=RTeR
其中, R \bold R R 为转动张量。

印度力学家 Seth 提出如下形式的 f f f ,此时的应变称作 Seth 应变度量
f ( λ ) = { 1 2 n ( λ 2 n − 1 ) ( n ∈ R , n ≠ 0 ) l n   λ ( n = 0 ) f(\lambda)= \begin{cases} \dfrac{1}{2n}(\lambda^{2n}-1) &(n\in\mathbb{R},n\ne0) \\\\ ln\ \lambda&(n=0) \end{cases} f(λ)= 2n1(λ2n1)ln λ(nR,n=0)(n=0)
其中, n = 0 n=0 n=0 时的定义源自 n ≠ 0 n\ne0 n=0 时的极限 (应用洛必达法则),即
lim ⁡ n → 0 1 2 n ( λ 2 n − 1 ) = lim ⁡ n → 0 e 2 n ⋅ l n λ − 1 2 n = lim ⁡ n → 0 ( 2 l n λ ) e 2 n ⋅ l n λ 2 = l n λ \lim_{n\rightarrow0}\dfrac{1}{2n}(\lambda^{2n}-1) =\lim_{n\rightarrow0}\dfrac{e^{2n\cdot ln\lambda}-1}{2n} =\lim_{n\rightarrow0}\dfrac{(2ln\lambda)e^{2n\cdot ln\lambda}}{2} =ln\lambda n0lim2n1(λ2n1)=n0lim2ne2nl1=n0lim2(2l)e2nl=l

2. Hill -Seth 应变度量的 Lagrange 描述

Lagrange 描述下的 Seth 应变张量为:
E = { ∑ α = 1 3 1 2 n ( λ α 2 n − 1 ) L ⃗ α ⊗ L ⃗ α = 1 2 n ( C n − I ) = 1 2 n ( U 2 n − I ) ( n ∈ R , n ≠ 0 ) ∑ α = 1 3 l n   λ α   L ⃗ α ⊗ L ⃗ α ≜ l n U ( n = 0 ) \bold E= \begin{cases} \sum\limits_{\alpha=1}^3\dfrac{1}{2n}(\lambda_\alpha^{2n}-1)\vec{L}_\alpha\otimes\vec{L}_\alpha =\dfrac{1}{2n}(\bold{C}^n-\bold I) =\dfrac{1}{2n}(\bold{U}^{2n}-\bold I)&(n\in\mathbb{R},n\ne0)\\\\ \sum\limits_{\alpha=1}^3ln\ \lambda_\alpha\ \vec{L}_\alpha\otimes\vec{L}_\alpha \triangleq ln\bold{U} &(n=0) \end{cases} E= α=132n1(λα2n1)L αL α=2n1(CnI)=2n1(U2nI)α=13ln λα L αL αlnU(nR,n=0)(n=0)

2.1. Green-Lagrange 应变张量

n = 1 n=1 n=1 时,
E ( 1 ) = 1 2 ( C − I ) \bold{E}^{(1)}=\dfrac{1}{2}(\bold{C-I}) E(1)=21(CI)
Green-Lagrange 应变张量的几何意义 进行说明:

立足于参考构型,经历变形后,任意方向线元 L ⃗ \vec{L} L 的长度比 λ L \lambda_{L} λL 为:
( d s d s 0 ) 2 = L ⃗ ⋅ C ⋅ L ⃗ \left(\dfrac{ds}{ds_0}\right)^2=\vec{L}\cdot\bold C\cdot\vec{L} (ds0ds)2=L CL
则,
L ⃗ ⋅ E ( 1 ) ⋅ L ⃗ = L ⃗ ⋅ [ 1 2 ( C − I ) ] ⋅ L ⃗ = 1 2 [ ( d s d s 0 ) 2 − 1 ] \vec{L}\cdot\bold E^{(1)}\cdot\vec{L} =\vec{L}\cdot\left[\dfrac{1}{2}(\bold{C-I})\right]\cdot\vec{L} =\dfrac{1}{2}\left[\left(\dfrac{ds}{ds_0}\right)^2-1\right] L E(1)L =L [21(CI)]L =21[(ds0ds)21]
物质坐标系 下,Green-Lagrange 应变张量可由位移进行表示:
E ( 1 ) = 1 2 ( F T ⋅ F − I )       = 1 2 [ ( I + ∂ u ⃗ ∂ X A ⊗ G ⃗ A ) T ⋅ ( I + ∂ u ⃗ ∂ X B ⊗ G ⃗ B ) − I ]     = 1 2 ( ▽ 0 u ⃗ + u ⃗ ▽ 0 + ▽ 0 u ⃗ ⋅ u ⃗ ▽ 0 ) \begin{aligned} & \bold{E}^{(1)} =\dfrac{1}{2}(\bold{F^T\cdot F-I}) \\\ \\ &\quad \ \ \ =\dfrac{1}{2}\left[\left(\bold I+\dfrac{\partial \vec{u}}{\partial X^A}\otimes\vec{G}^A\right)^T\cdot \left(\bold I+\dfrac{\partial \vec{u}}{\partial X^B}\otimes\vec{G}^B\right)-\bold I\right]\\\\ &\quad \ \ \ =\dfrac{1}{2}\left(\triangledown_0\vec{u}+\vec{u}\triangledown_0+\triangledown_0\vec{u}\cdot\vec{u}\triangledown_0\right) \end{aligned}  E(1)=21(FTFI)   =21[(I+XAu G A)T(I+XBu G B)I]   =21(0u +u 0+0u u 0)
写成分量形式:
E A B ( 1 ) = 1 2 ( U A ∣ B + U B ∣ A + U M ∣ A U M ∣ B ) {E}^{(1)}_{AB}=\dfrac{1}{2}\left(U_A|_B+U_B|_A+U^M|_AU_M|_B\right) EAB(1)=21(UAB+UBA+UMAUMB)

2.2. 物质 Biot 应变张量/工程应变

n = 1 2 n=\dfrac{1}{2} n=21 时,
E ( 1 2 ) = U − I \bold{E}^{(\frac{1}{2})}=\bold{U-I} E(21)=UI

2.3. 右 Henkey 应变张量/Lagrange 型对数应变

n = 0 n=0 n=0 时,
E ( 0 ) = l n U = ∑ α = 1 3 l n   λ α   L ⃗ α ⊗ L ⃗ α \bold{E}^{(0)}=ln\bold U=\sum\limits_{\alpha=1}^3ln\ \lambda_\alpha\ \vec{L}_\alpha\otimes\vec{L}_\alpha E(0)=lnU=α=13ln λα L αL α

2.4. Piola 应变张量

n = − 1 n=-1 n=1 时,
E ( − 1 ) = 1 2 ( I − C − 1 ) \bold{E}^{(-1)}=\dfrac{1}{2}(\bold{I-\overset{-1}{C}}) E(1)=21(IC1)

3. Hill -Seth 应变度量的 Euler 描述

Euler 描述下的 Seth 应变张量为:
e = { ∑ α = 1 3 1 2 n ( λ α 2 n − 1 ) l ⃗ α ⊗ l ⃗ α = 1 2 n ( B n − I ) = 1 2 n ( V 2 n − I ) ( n ∈ R , n ≠ 0 ) ∑ α = 1 3 l n   λ α   l ⃗ α ⊗ l ⃗ α ≜ l n V ( n = 0 ) \bold e= \begin{cases} \sum\limits_{\alpha=1}^3\dfrac{1}{2n}(\lambda_\alpha^{2n}-1)\vec{l}_\alpha\otimes\vec{l}_\alpha =\dfrac{1}{2n}(\bold{B}^n-\bold I) =\dfrac{1}{2n}(\bold{V}^{2n}-\bold I)&(n\in\mathbb{R},n\ne0)\\\\ \sum\limits_{\alpha=1}^3ln\ \lambda_\alpha\ \vec{l}_\alpha\otimes\vec{l}_\alpha \triangleq ln\bold{V } &(n=0) \end{cases} e= α=132n1(λα2n1)l αl α=2n1(BnI)=2n1(V2nI)α=13ln λα l αl αlnV(nR,n=0)(n=0)

3.1. Finger 应变张量

n = 1 n=1 n=1 时,
e ( 1 ) = 1 2 ( B − I ) \bold{e}^{(1)}=\dfrac{1}{2}(\bold{B-I}) e(1)=21(BI)

3.2. 左 Henkey 应变张量/Euler 型对数应变

n = 0 n=0 n=0 时,
e ( 0 ) = l n V = ∑ α = 1 3 l n   λ α   l ⃗ α ⊗ l ⃗ α \bold{e}^{(0)}=ln\bold V=\sum\limits_{\alpha=1}^3ln\ \lambda_\alpha\ \vec{l}_\alpha\otimes\vec{l}_\alpha e(0)=lnV=α=13ln λα l αl α

3.3. 空间 Biot 应变张量

n = − 1 2 n=-\dfrac{1}{2} n=21 时,
e ( − 1 2 ) = I − V − 1 \bold{e}^{(-\frac{1}{2})}=\bold{I-V^{-1}} e(21)=IV1

3.4. Almansi 应变张量

n = − 1 n=-1 n=1 时,
e ( − 1 ) = 1 2 ( I − B − 1 ) = 1 2 ( I − c ) \bold{e}^{(-1)} =\dfrac{1}{2}(\bold{I-\overset{-1}{B}}) =\dfrac{1}{2}(\bold{I-\bold c}) e(1)=21(IB1)=21(Ic)

Almansi 应变张量的几何意义 进行说明:

立足于当前构型,经历变形后,任意方向线元 l ⃗ \vec{l} l 的长度比 λ l \lambda_{l} λl 为:
( d s d s 0 ) 2 = l ⃗ ⋅ c ⋅ l ⃗ \left(\dfrac{ds}{ds_0}\right)^2=\vec{l}\cdot\bold c\cdot\vec{l} (ds0ds)2=l cl
则,
l ⃗ ⋅ e ( − 1 ) ⋅ l ⃗ = l ⃗ ⋅ [ 1 2 ( I − c ) ] ⋅ l ⃗ = 1 2 [ 1 − ( d s d s 0 ) 2 ] \vec{l}\cdot\bold e^{(-1)}\cdot\vec{l} =\vec{l}\cdot\left[\dfrac{1}{2}(\bold{I-c})\right]\cdot\vec{l} =\dfrac{1}{2}\left[1-\left(\dfrac{ds}{ds_0}\right)^2\right] l e(1)l =l [21(Ic)]l =21[1(ds0ds)2]

空间坐标系 下,Almansi 应变张量可由位移进行表示:
e ( − 1 ) = 1 2 ( I − F − T ⋅ F − 1 )     = 1 2 [ I − ( I − ∂ u ⃗ ∂ x i ⊗ g ⃗ i ) T ⋅ ( I − ∂ u ⃗ ∂ x i ⊗ g ⃗ i ) ]     = 1 2 ( ▽ u ⃗ + u ⃗ ▽ − ▽ u ⃗ ⋅ u ⃗ ▽ ) \begin{aligned} & \bold{e}^{(-1)} =\dfrac{1}{2}(\bold{I}-\overset{-T}{\bold F}\cdot\overset{-1}{\bold F})\\\\ &\quad\ \ \ =\dfrac{1}{2}\left[\bold{I}-\left(\bold I-\dfrac{\partial \vec{u}}{\partial x^i}\otimes\vec{g}^i\right)^T\cdot\left(\bold I-\dfrac{\partial \vec{u}}{\partial x^i}\otimes\vec{g}^i\right)\right] \\\\ &\quad\ \ \ =\dfrac{1}{2}\left(\triangledown\vec{u}+\vec{u}\triangledown-\triangledown\vec{u}\cdot\vec{u}\triangledown\right) \end{aligned} e(1)=21(IFTF1)   =21[I(Ixiu g i)T(Ixiu g i)]   =21(u +u u u )
分量形式为:
e i j ( − 1 ) = 1 2 ( u i ∣ j + u j ∣ i − u k ∣ i u k ∣ j ) e^{(-1)}_{ij}=\dfrac{1}{2}(u_i|_j+u_j|_i-u^k|_iu_k|j) eij(1)=21(uij+ujiukiukj)

4. 应变协调方程

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值