Oerder M., Meyr H… Digital filter and square timing recovery [J]. IEEE Trans. Com., 1988, 36(5):605~611.论文翻译
数字滤波器和平方定时恢复
摘要
用于数字传输的定时恢复电路的数字实现越来越受到关注。在本文中,我们提出了一种新的数字化算法,它可以在高速率下非常有效地实现。计算并通过仿真验证了所产生的定时抖动。与其他已知算法不同,这里提出的一种算法允许自由运行的采样振荡器和一种新的平面滤波方法,可以防止同步挂起。
1.简介
随着信号处理器(用于低速率)和应用专用集成电路(用于高速率)的能力的提高,用于同步数字基带信号以及QPSK或QAM信号的实现和数字化接收机越来越受到关注。这些接收机必须包括用于定时恢复的算法。在过去几年中,已经提出了几种这样的离散时间算法[1]~[3]。然而,这些解决方案中的大多数只包括将定时同步的一部分集成到接收机的数字部分中,即生成某种定时误差信号。这种误差信号通常用于控制VCO产生sampling strobes.
鉴于集成实现的优点,接收机应尽可能多地为数字。这意味着输入信号应该由自由运行的振荡器以固定速率采样得到,然后进一步的处理都应该是数字化的且基于这些采样点。对于符号检测,这意味着必须通过某种插值从给定采样中生成最佳决策度量,插值由当前定时误差的估计值控制[4]。因此,我们需要一种算法来从信号的给定样本确定该绝对定时偏移(不仅仅是定时误差信号)。
本文提出了这样一种算法。它基于著名的连续时间滤波器和平方定时恢复[5]、[6]得到其数字化算法,但它以一种新的方式从平方信号中提取定时信息。尽管分析方法不同,本文中对定时抖动的分析得出了与连续时间情况类似的结果。
本文的另一个主要贡献是一种新的定时信号hangup-free滤波方法。对于所有其他已知的定时恢复方法,一个主要问题是同步环路可能会卡在不稳定的平衡点。在本文中,我们展示了如何通过二维时序估计的平面滤波来避免这种情况。
本文的最后一部分介绍了一种适用于高数据速率超大规模集成的定时检测器的数字实现。
2.定时估计
这里我们考虑通过线性调制方案(PAM、QAM、PSK)进行数字通信的定时恢复。接收信号(PAM)或等效低通信号(QAM、PSK)可以写为
r
(
t
)
=
∑
n
=
−
∞
∞
a
n
g
T
(
t
−
n
T
−
ε
(
t
)
T
)
+
n
(
t
)
=
u
(
t
)
+
n
(
t
)
(1)
\begin{align} r(t) &= \sum\limits_{n = - \infty }^\infty {{a_n}{g_T}(t - nT - \varepsilon (t)T) + n(t)} \\ &=u(t) + n(t) \end{align} \tag{1}
r(t)=n=−∞∑∞angT(t−nT−ε(t)T)+n(t)=u(t)+n(t)(1)
其中,
a
n
a_n
an是具有平均功率为1(例如,QPSK信号分布在
±
1
,
±
i
\pm 1,\pm i
±1,±i)的复信号,
g
T
(
t
)
g_T(t)
gT(t)是发送信号脉冲,
T
T
T是符号周期,
n
(
t
)
n(t)
n(t)是功率密度为
N
0
N_0
N0 的高斯白噪声,
ε
(
t
)
\varepsilon(t)
ε(t)是未知的缓慢变化的时间延迟。
现在,定时恢复意味着估计延迟 ε ( t ) \varepsilon(t) ε(t),以实现数据的最佳检测。由于 ε \varepsilon ε 变化非常缓慢,对于数字实现,我们可以逐段处理接收的信号。在于每个部分 Δ m \Delta _m Δm里,我们可以假设 ε \varepsilon ε 为常数,并获得估计值 ε ~ m \widetilde \varepsilon _m ε m。然后必须将该估计值与之前的估计值相结合(即对其进行滤波),以便获得最佳估计值 ε ~ m \widetilde \varepsilon _m ε m。后者可用于控制用于检测的模拟或数字采样器。
下面我们考虑一种特别适合于数字实现的特殊类型的定时估计器。它类似于连续定时滤波器和平方同步器,输入信号被平方,并且通过滤波操作提取符号速率下的频谱分量。图1显示了算法。
在接收滤波器(脉冲响应为
g
R
(
t
)
g_R(t)
gR(t) 之后,信号
r
~
(
t
)
=
r
(
t
)
∗
g
R
(
t
)
\widetilde r(t) = r(t) * {g_R}(t)
r
(t)=r(t)∗gR(t) 以频率
N
/
T
N/T
N/T 进行采样(
N
/
T
=
N
×
R
B
=
f
s
N/T=N \times R_B=f_s
N/T=N×RB=fs,
N
N
N 即是过采样倍数)。
r
~
k
=
r
~
(
k
T
/
N
)
(2)
\widetilde r_k = \widetilde r(kT/N)\tag{2}
r
k=r
(kT/N)(2)
序列
x
k
=
∣
∑
n
=
−
∞
∞
a
n
g
(
k
T
N
−
n
T
−
ε
T
)
+
n
~
(
k
T
N
)
∣
2
(3)
{x_k} = {\left| {\sum\limits_{n = - \infty }^\infty {{a_n}g(\frac{{kT}}{N} - nT - \varepsilon T) + \widetilde n(\frac{{kT}}{N})} } \right|^2} \tag{3}
xk=∣
∣n=−∞∑∞ang(NkT−nT−εT)+n
(NkT)∣
∣2(3)
其中
g
(
t
)
=
g
T
(
t
)
∗
g
R
(
t
)
g(t) = {g_T}(t) * {g_R}(t)
g(t)=gT(t)∗gR(t)
x
k
x_k
xk 表示经滤波和平方后输入信号
r
~
k
\widetilde r_k
r
k 的采样值,并且在
1
/
T
1/T
1/T 处存在频谱分量。在传统同步器中,这个频谱分量需要由PLL或窄带滤波器提取,这里则是对时间长度为
L
T
LT
LT 的每个部分(对应
L
N
LN
LN 个采样点)计算符号速率下的复傅里叶系数来确定。
X
m
=
∑
k
=
m
L
N
(
m
+
1
)
L
N
−
1
x
k
e
−
j
2
π
k
/
N
(4)
{X_m} = \sum\limits_{k =mLN}^{(m + 1)LN - 1} {{x_k}{e^{ - j2\pi k/N}}} \tag{4}
Xm=k=mLN∑(m+1)LN−1xke−j2πk/N(4)
这里回顾下连续傅里叶变换
X ( j Ω ) = ∫ − ∞ + ∞ x ( t ) e − j Ω t d t X(j\Omega ) = \int_{ - \infty }^{ + \infty } {x(t){e^{ - j\Omega t}}dt} X(jΩ)=∫−∞+∞x(t)e−jΩtdt
式中, Ω = 2 π T \Omega = \frac{{2\pi }}{T} Ω=T2π,以采样速率为 N / T N/T N/T采样后, t = k T / N t=kT/N t=kT/N
如下一节所示,该系数的归一化相位 ε ~ m = − 1 2 π arg ( X m ) \widetilde \varepsilon _m = - \frac{1}{{2\pi }}\arg ({X_m}) ε m=−2π1arg(Xm) 是 ε \varepsilon ε 的无偏估计。
采样率必须确保 1 / T 1/T 1/T 处的频谱分量仍可表示,即 N / T > 2 / T N/T>2/T N/T>2/T。出于实际原因,我们使用 N = 4 N=4 N=4。在单边带宽小于 1 / T 1/T 1/T 的带宽有效调制的情况下,接收滤波器 g R ( T ) g_R(T) gR(T) 的单边带宽也小于 1 / T 1/T 1/T,因此平方信号的单边宽度小于 2 / T 2/T 2/T。因此,当 N = 4 N=4 N=4 时,序列 x k x_k xk 完全描述了潜在的连续时间信号。
3.统计与估计
在本节中。我们计算作为脉冲形式 g ( t ) g(t) g(t) 和加性噪声的噪声功率密度 N 0 N_0 N0 的函数的估计 ε ~ m \widetilde \varepsilon _m ε m 的统计量。我们假设 m = 0 m=0 m=0,为了更简单的表示法,省略了索引 m m m。
A.均值
估计的均值为
E
[
ε
~
]
=
E
[
−
1
2
π
arg
(
X
)
]
(5)
E[\widetilde \varepsilon ] = E\left[ {\frac{{ - 1}}{{2\pi }}\arg (X)} \right] \tag{5}
E[ε
]=E[2π−1arg(X)](5)
对于较小的估计方差,我们可以将arg操作线性化。
E
[
ε
~
]
≈
−
1
2
π
arg
(
E
[
X
]
)
=
−
1
2
π
arg
(
∑
k
=
0
L
N
−
1
E
[
x
k
]
e
−
j
2
π
k
/
N
)
(6)
\begin{align} E[\widetilde \varepsilon ] &\approx \frac{{ - 1}}{{2\pi }}\arg (E[X])\\ {\rm{}} &= \frac{{ - 1}}{{2\pi }}\arg (\sum\limits_{k = 0}^{LN - 1} {E[{x_k}]{e^{ - j2\pi k/N}}} ) \end{align} \tag{6}
E[ε
]≈2π−1arg(E[X])=2π−1arg(k=0∑LN−1E[xk]e−j2πk/N)(6)显然,当
∣
arg
(
X
)
∣
<
π
\left| {\arg (X)} \right| < \pi
∣arg(X)∣<π 时线性化才有效。然而,由于第四节中讨论的后续滤波操作,这是唯一值得关注的。
我们首先需要计算平方信号的期望值
E
[
x
k
]
=
E
[
∣
∑
n
=
−
∞
∞
a
n
g
(
k
T
/
N
−
n
T
−
ε
T
)
+
n
~
(
k
T
/
N
)
∣
2
]
(7)
E[{x_k}] = E\left[ {{{\left| {\sum\limits_{n = - \infty }^\infty {{a_n}g(kT/N - nT - \varepsilon T) + \widetilde n(kT/N)} } \right|}^2}} \right] \tag{7}
E[xk]=E⎣
⎡∣
∣n=−∞∑∞ang(kT/N−nT−εT)+n
(kT/N)∣
∣2⎦
⎤(7)必须对符号
a
n
a_n
an 和噪声
n
(
t
)
n(t)
n(t) 的联合分布进行期望。由于噪声和符号相互独立,当
E
[
n
~
(
t
)
]
=
0
E[\widetilde n(t)]=0
E[n
(t)]=0 时,公式(7)中平方的交叉项消失。
剩下的项是
E
[
x
k
]
=
E
[
∣
∑
n
=
−
∞
∞
a
n
g
(
k
T
/
N
−
n
T
−
ε
T
)
∣
2
]
+
E
[
∣
n
~
(
k
T
/
N
)
∣
2
]
=
∑
n
=
−
∞
∞
∑
m
=
−
∞
∞
E
[
a
n
a
m
∗
]
g
(
k
T
/
N
−
n
T
−
ε
T
)
⋅
g
∗
(
k
T
/
N
−
n
T
−
ε
T
)
+
E
[
∣
n
~
(
k
T
/
N
)
∣
2
]
(8)
\begin{align} E[{x_k}] &= E\left[ {{{\left| {\sum\limits_{n = - \infty }^\infty {{a_n}g(kT/N - nT - \varepsilon T)} } \right|}^2}} \right] + E\left[ {{{\left| {\widetilde n(kT/N)} \right|}^2}} \right]\\ {\rm{ }} &= \sum\limits_{n = - \infty }^\infty {\sum\limits_{m = - \infty }^\infty {E[{a_n}a_m^*]} } g(kT/N - nT - \varepsilon T) \cdot {g^*}(kT/N - nT - \varepsilon T) + E\left[ {{{\left| {\widetilde n(kT/N)} \right|}^2}} \right] \end{align} \tag{8}
E[xk]=E⎣
⎡∣
∣n=−∞∑∞ang(kT/N−nT−εT)∣
∣2⎦
⎤+E[∣n
(kT/N)∣2]=n=−∞∑∞m=−∞∑∞E[anam∗]g(kT/N−nT−εT)⋅g∗(kT/N−nT−εT)+E[∣n
(kT/N)∣2](8)对于噪声功率
σ
2
\sigma^2
σ2 和平均功率为
1
1
1 的独立分布符号,我们可以得到
E
[
x
k
]
=
∑
n
=
−
∞
∞
∣
g
(
k
T
/
N
−
n
T
−
ε
T
)
∣
2
+
σ
2
(9)
\begin{array}{l} E[{x_k}] = \sum\limits_{n = - \infty }^\infty {{{\left| {g(kT/N - nT - \varepsilon T)} \right|}^2}} + {\sigma ^2}\\ {\rm{ }} \end{array} \tag{9}
E[xk]=n=−∞∑∞∣g(kT/N−nT−εT)∣2+σ2(9)使用附录A中的等式(A6),我们得到
X
X
X 的期望值
E
[
X
]
=
∑
k
=
0
L
N
−
1
E
[
x
k
]
e
−
j
2
π
k
/
N
(10)
E[X] = \sum\limits_{k = 0}^{LN - 1} {E[{x_k}]{e^{ - j2\pi k/N}}} \tag{10}
E[X]=k=0∑LN−1E[xk]e−j2πk/N(10)
=
L
N
T
Φ
[
∣
g
(
t
−
ε
T
)
∣
2
]
f
=
1
/
T
(11)
{\rm{ = }}\frac{{LN}}{T}\Phi {[{\left| {g(t - \varepsilon T)} \right|^2}]_{f = 1/T}} \tag{11}
=TLNΦ[∣g(t−εT)∣2]f=1/T(11)其中
Φ
[
x
(
t
)
]
=
∫
−
∞
∞
x
(
t
)
e
−
j
2
π
f
t
d
t
\Phi [x(t)] = \int_{ - \infty }^\infty {x(t){e^{ - j2\pi ft}}dt}
Φ[x(t)]=∫−∞∞x(t)e−j2πftdt在这里我们引入以下函数来简化符号:
p
n
(
t
)
=
g
(
t
)
g
∗
(
t
−
n
T
)
(12)
{p_n}(t) = g(t){g^*}(t - nT)\tag{12}
pn(t)=g(t)g∗(t−nT)(12)
P
n
(
f
)
=
Φ
[
p
n
(
t
)
]
(13)
{P_n}(f) = \Phi [{p_n}(t)]\tag{13}
Pn(f)=Φ[pn(t)](13)之后有
E
[
X
]
=
L
N
T
Φ
[
p
0
(
t
−
ε
T
)
]
f
=
1
/
T
=
L
N
T
P
0
(
1
/
T
)
e
−
j
2
π
ε
(14)
\begin{align} E[X] &= \frac{{LN}}{T}\Phi {[{p_0}(t - \varepsilon T)]_{f = 1/T}}\\\\ &=\frac{{LN}}{T}{P_0}(1/T){e^{ - j2\pi \varepsilon }} \end{align} \tag{14}
E[X]=TLNΦ[p0(t−εT)]f=1/T=TLNP0(1/T)e−j2πε(14)可以得出
E
[
ε
~
]
=
−
1
2
π
arg
(
L
N
T
P
0
(
1
/
T
)
e
−
j
2
π
ε
)
=
ε
−
1
2
π
arg
P
0
(
1
/
T
)
(15)
\begin{align} E[\widetilde \varepsilon ] &= \frac{{ - 1}}{{2\pi }}\arg (\frac{{LN}}{T}{P_0}(1/T){e^{ - j2\pi \varepsilon }})\\\\ &=\varepsilon \frac{{ - 1}}{{2\pi }}\arg {P_0}(1/T) \end{align} \tag{15}
E[ε
]=2π−1arg(TLNP0(1/T)e−j2πε)=ε2π−1argP0(1/T)(15)因此,在假设下
arg
P
0
(
1
/
T
)
=
0
(16)
\arg {P_0}(1/T) = 0\tag{16}
argP0(1/T)=0(16)
ε
~
\widetilde \varepsilon
ε
是定时相位
ε
\varepsilon
ε 的无偏估计。但即使 (14)不满足,
ε
~
\widetilde \varepsilon
ε
的平均值也正好等于所需的样本偏移量,如下所示。我们假设
g
R
(
t
)
=
g
T
∗
(
−
t
+
α
T
)
(广义的匹配滤波器)
(17)
{g_R}(t) = g_T^*( - t + \alpha T)\ (广义的匹配滤波器) \tag{17}
gR(t)=gT∗(−t+αT) (广义的匹配滤波器)(17)因此可以得出
g
(
t
)
=
g
0
(
t
−
α
T
)
w
i
t
h
g
0
(
t
)
=
g
T
(
t
)
∗
g
T
∗
(
−
t
)
(18)
g(t) = {g_0}(t - \alpha T)\ \ with\ \ {g_0}(t) = {g_T}(t) * g_T^*( - t) \tag{18}
g(t)=g0(t−αT) with g0(t)=gT(t)∗gT∗(−t)(18)
r
~
(
t
)
=
∑
n
a
n
g
0
(
t
−
n
T
−
ε
T
−
α
T
)
+
n
~
(
t
)
(19)
\widetilde r(t) = \sum\limits_n {{a_n}{g_0}(t - nT - \varepsilon T - \alpha T)} + \widetilde n(t) \tag{19}
r
(t)=n∑ang0(t−nT−εT−αT)+n
(t)(19)由于
g
0
(
t
)
{g_0}(t)
g0(t) 是对称的,因此最佳采样时刻为
g
0
(
t
=
0
)
{g_0}(t=0)
g0(t=0) ,即,对于符号
a
n
a_n
an 在
t
o
p
t
,
n
=
n
T
+
ε
T
+
α
T
(20)
{t_{{\rm{opt}},n}} = nT + \varepsilon T + \alpha T \tag{20}
topt,n=nT+εT+αT(20)即所需的采样偏移量为
(
ε
+
α
)
T
(\varepsilon+\alpha)T
(ε+α)T。计算公式(13)然后得出
P
0
(
f
)
=
e
−
j
2
π
α
T
f
Φ
[
g
0
(
t
)
g
0
∗
(
t
)
]
(21)
{P_0}(f) = {e^{ - j2\pi \alpha Tf}}\Phi [{g_0}(t)g_0^*(t)] \tag{21}
P0(f)=e−j2παTfΦ[g0(t)g0∗(t)](21)由于
g
o
(
t
)
g_o(t)
go(t) 是对称的,所以公式(21)的傅里叶变换在实数域中。
因此,我们得到
arg
P
0
(
1
/
T
)
=
−
2
π
α
(22)
\arg {P_0}(1/T) = - 2\pi \alpha \tag{22}
argP0(1/T)=−2πα(22)以及得到
E
[
ε
~
]
=
ε
+
α
(23)
E[\widetilde \varepsilon ] = \varepsilon + \alpha \tag{23}
E[ε
]=ε+α(23)即得到符号检测所需的。
B.方差
这里我们确定随机变量
ε
^
\widehat \varepsilon
ε
的方差,即估计的均方误差。我们假设
ε
=
0
\varepsilon = 0
ε=0
arg
P
0
(
1
/
T
)
=
0
(24)
\arg {P_0}(1/T) = 0 \tag{24}
argP0(1/T)=0(24)以简化符号。(可以很容易地证明,结果对于任意的
ε
\varepsilon
ε 和
arg
P
0
\arg {P_0}
argP0 都是有效的。)
v
a
r
[
ε
^
]
=
E
[
ε
^
2
]
=
1
(
2
π
)
2
E
[
(
arg
(
X
)
)
2
]
≈
1
(
2
π
)
2
E
[
(
I
m
(
X
)
)
2
]
(
E
[
R
e
X
]
)
2
(25)
\begin{align} {\mathop{\rm var}} [\widehat \varepsilon ] &= E[{\widehat \varepsilon ^2}]\\ &= \frac{1}{{{{(2\pi )}^2}}}E[{(\arg (X))^2}]\\ &\approx \frac{1}{{{{(2\pi )}^2}}}\frac{{E[{{({\mathop{\rm Im}\nolimits} (X))}^2}]}}{{{{(E[{\mathop{\rm Re}\nolimits} X])}^2}}} \end{align} \tag{25}
var[ε
]=E[ε
2]=(2π)21E[(arg(X))2]≈(2π)21(E[ReX])2E[(Im(X))2](25)后一种近似是有效的,因为
X
X
X 的虚部具有零均值,并且虚部和实部的方差与平方实均值相比都很小。
根据公式(14)和(24)得出
E
[
R
e
X
]
=
E
[
X
]
=
L
N
T
P
0
(
1
/
T
)
(26)
E[{\mathop{\rm Re}\nolimits} X] = E[X] = \frac{{LN}}{T}{P_0}(1/T) \tag{26}
E[ReX]=E[X]=TLNP0(1/T)(26)虚部的方差为
E
[
(
I
m
X
)
2
]
=
E
[
(
I
m
[
∑
k
=
0
L
N
−
1
x
k
e
−
j
2
π
k
/
N
]
)
2
]
=
∑
k
′
=
0
L
N
−
1
∑
k
=
0
L
N
−
1
E
[
x
k
x
k
′
]
sin
(
2
π
k
/
N
)
sin
(
2
π
k
′
/
N
)
(27)
\begin{array}{l} E[{({\mathop{\rm Im}\nolimits} X)^2}]\\ \\ = E\left[ {{{({\mathop{\rm Im}\nolimits} \left[ {\sum\limits_{k = 0}^{LN - 1} {{x_k}{e^{ - j2\pi k/N}}} } \right])}^2}} \right]\\ \\ = \sum\limits_{k' = 0}^{LN - 1} {\sum\limits_{k = 0}^{LN - 1} {E[{x_k}{x_{k'}}]\sin (2\pi k/N)\sin (2\pi k'/N)} } \end{array} \tag{27}
E[(ImX)2]=E[(Im[k=0∑LN−1xke−j2πk/N])2]=k′=0∑LN−1k=0∑LN−1E[xkxk′]sin(2πk/N)sin(2πk′/N)(27)其中
x
k
=
∣
∑
n
=
−
∞
∞
a
n
g
(
k
T
/
N
−
n
T
)
+
n
~
(
k
T
/
N
)
∣
2
(28)
{x_k} = {\left| {\sum\limits_{n = - \infty }^\infty {{a_n}g(kT/N - nT) + \widetilde n(kT/N)} } \right|^2} \tag{28}
xk=∣
∣n=−∞∑∞ang(kT/N−nT)+n
(kT/N)∣
∣2(28)通过使用一些对大
L
L
L 有效的近似值,可以计算期望值(附录B)。如果在公式(25)中使用结果,我们得到
v
a
r
[
ε
^
]
=
σ
s
×
s
2
+
σ
s
×
n
2
+
σ
n
×
n
2
(29)
{\mathop{\rm var}} [\widehat \varepsilon ] = \sigma _{s \times s}^2 + \sigma _{s \times n}^2 + \sigma _{n \times n}^2 \tag{29}
var[ε
]=σs×s2+σs×n2+σn×n2(29)式中
σ
s
×
s
2
=
1
(
2
π
)
2
1
L
∑
m
(
I
m
P
m
(
1
/
T
)
)
2
(
P
0
(
1
/
T
)
)
2
(30a)
\sigma _{s \times s}^2 = \frac{1}{{{{(2\pi )}^2}}}\frac{1}{L}\frac{{\sum\limits_m {{{({\mathop{\rm Im}\nolimits} {P_m}(1/T))}^2}} }}{{{{({P_0}(1/T))}^2}}} \tag{30a}
σs×s2=(2π)21L1(P0(1/T))2m∑(ImPm(1/T))2(30a)
σ
s
×
n
2
=
1
(
2
π
)
2
1
L
N
0
2
I
3
(
P
0
(
1
/
T
)
)
2
(30b)
\sigma _{s \times n}^2 = \frac{1}{{{{(2\pi )}^2}}}\frac{1}{L}{N_0}\frac{{2{I_3}}}{{{{({P_0}(1/T))}^2}}} \tag{30b}
σs×n2=(2π)21L1N0(P0(1/T))22I3(30b)
σ
n
×
n
2
=
1
(
2
π
)
2
1
L
N
0
2
T
2
R
e
Φ
(
1
/
T
)
(
P
0
(
1
/
T
)
)
2
(30c)
\sigma _{n \times n}^2 = \frac{1}{{{{(2\pi )}^2}}}\frac{1}{L}N_0^2\frac{{\frac{T}{2}{\mathop{\rm Re}\nolimits} \Phi (1/T)}}{{{{({P_0}(1/T))}^2}}} \tag{30c}
σn×n2=(2π)21L1N02(P0(1/T))22TReΦ(1/T)(30c)
I
3
=
∫
−
∞
∞
∫
−
∞
∞
g
(
t
)
g
∗
(
t
′
)
φ
(
t
−
t
′
)
⋅
sin
(
2
π
t
/
T
)
sin
(
2
π
t
′
/
T
)
d
t
d
t
′
(31)
{I_3} = \int_{ - \infty }^\infty {\int_{ - \infty }^\infty {g(t){g^ * }(t')} } \varphi (t - t') \cdot \sin (2\pi t/T)\sin (2\pi t'/T)dtdt' \tag{31}
I3=∫−∞∞∫−∞∞g(t)g∗(t′)φ(t−t′)⋅sin(2πt/T)sin(2πt′/T)dtdt′(31)
Ψ
(
f
)
=
Φ
[
φ
2
(
t
)
]
(32)
\Psi (f) = \Phi [{\varphi ^2}(t)] \tag{32}
Ψ(f)=Φ[φ2(t)](32)
φ
(
τ
)
=
∫
−
∞
∞
g
R
(
t
)
g
R
∗
(
t
+
τ
)
d
t
(33)
\varphi (\tau ) = \int_{ - \infty }^\infty {{g_R}(t)g_R^*(t + \tau )} dt \tag{33}
φ(τ)=∫−∞∞gR(t)gR∗(t+τ)dt(33)三项 [30a)-c)] 表示由(信号
×
\times
×信号),(信号
×
\times
×噪声),(噪声
×
\times
×噪声)相互作用产生的定时抖动部分
C.渐近无抖动定时恢复的条件
在本节中,我们研究了在无噪声情况下(
N
0
=
0
N_0=0
N0=0)定时估计具有零方差所需的发送和接收滤波器所满足的条件,即方差的
s
×
s
s\times s
s×s 部分的条件
σ
s
×
s
2
=
1
(
2
π
)
2
1
L
∑
m
(
I
m
P
m
(
1
/
T
)
)
2
(
P
0
(
1
/
T
)
)
2
(34)
\sigma _{s \times s}^2 = \frac{1}{{{{(2\pi )}^2}}}\frac{1}{L}\frac{{\sum\limits_m {{{({\mathop{\rm Im}\nolimits} {P_m}(1/T))}^2}} }}{{{{({P_0}(1/T))}^2}}} \tag{34}
σs×s2=(2π)21L1(P0(1/T))2m∑(ImPm(1/T))2(34)置为零,可以得到
p
m
=
g
(
t
)
g
∗
(
t
−
m
T
)
(35)
{p_m} = g(t){g^*}(t - mT) \tag{35}
pm=g(t)g∗(t−mT)(35)
P
m
(
f
)
=
G
(
f
)
∗
(
G
∗
(
−
f
)
e
−
j
2
π
f
m
T
)
=
∫
−
∞
∞
G
(
f
−
ν
)
G
∗
(
−
ν
)
e
−
j
2
π
ν
m
T
d
ν
(36)
\begin{align} {P_m}(f) &= G(f) * (G*( - f){e^{ - j2\pi fmT}})\\ &= \int_{ - \infty }^\infty {G(f - \nu )G*( - \nu ){e^{ - j2\pi \nu mT}}d\nu } \end{align} \tag{36}
Pm(f)=G(f)∗(G∗(−f)e−j2πfmT)=∫−∞∞G(f−ν)G∗(−ν)e−j2πνmTdν(36)令缩写为
H
(
f
)
=
G
(
1
/
T
−
f
)
G
∗
(
−
f
)
(37)
H(f) = G(1/T - f)G^*( - f) \tag{37}
H(f)=G(1/T−f)G∗(−f)(37)式(36)简写为
P
m
(
1
/
T
)
=
∫
−
∞
∞
H
(
ν
)
e
−
j
2
π
ν
m
T
d
ν
(38)
{P_m}(1/T) = \int_{ - \infty }^\infty {H(\nu ){e^{ - j2\pi \nu mT}}} d\nu \tag{38}
Pm(1/T)=∫−∞∞H(ν)e−j2πνmTdν(38)对于实数值
g
(
t
)
g(t)
g(t),即发射和接收滤波器的对称联合传递函数,有
G
∗
(
−
f
)
=
G
(
f
)
(39)
{G^*}( - f) = G(f) \tag{39}
G∗(−f)=G(f)(39)
H
(
f
)
=
G
(
1
/
T
−
f
)
G
(
f
)
(40)
H(f) = G(1/T - f)G(f) \tag{40}
H(f)=G(1/T−f)G(f)(40)这意味着
H
(
f
)
H(f)
H(f) 关于
1
/
2
T
1/2T
1/2T 左右对称
I
m
P
m
(
1
/
T
)
=
∫
−
∞
∞
I
m
H
(
ν
)
cos
(
2
π
ν
m
T
)
d
ν
(41)
{\mathop{\rm Im}\nolimits} {P_m}(1/T) = \int_{ - \infty }^\infty {{\mathop{\rm Im}\nolimits} H(\nu )\cos (2\pi \nu mT)} d\nu \tag{41}
ImPm(1/T)=∫−∞∞ImH(ν)cos(2πνmT)dν(41)因此,零抖动的充分条件是
I
m
H
(
f
)
=
0
(42)
\mathop{\rm Im}H(f)=0 \tag{42}
ImH(f)=0(42)例如,可通过以下方式获得
g
(
t
)
=
g
(
−
t
)
(对称脉冲形状)
(43)
g(t)=g(-t) \ \ \ (对称脉冲形状) \tag{43}
g(t)=g(−t) (对称脉冲形状)(43)当然还有所有线性相位脉冲
g
(
τ
+
t
)
=
g
(
τ
−
t
)
(44)
g(\tau + t) = g(\tau - t) \tag{44}
g(τ+t)=g(τ−t)(44)因为它们的作用类似于具有附加时延
ε
0
=
τ
{\varepsilon _0} = \tau
ε0=τ 的相应对称脉冲
g
(
t
−
τ
)
g(t-\tau)
g(t−τ)。然而,条件(43)和(44)表明,同步路径中的最佳接收滤波器是匹配滤波器。
g
R
(
t
)
=
g
T
(
−
t
)
(45)
{g_R}(t) = {g_T}( - t) \tag{45}
gR(t)=gT(−t)(45)当然,这些结果仅适用于第III-B节中的近似,特别是仅适用于大的估计间隔LT。在短间隔的情况下,估计显示出抖动,但抖动的频谱在原点处为零,因此可以通过低通滤波进行抑制。通常只有使用非重叠脉冲才能获得真正的无抖动。
这与传统的连续时间滤波器和平方定时恢复形成对比。在连续时间情况下,通过检测定时波的零点来确定定时。因此,如果定时波仅表现出振幅抖动,则真正的无抖动定时恢复是可能的。但没有相位抖动。后者可以通过例如局部对称脉冲实现[7]。然而,在我们的情况下,估计是基于样本,这些样本与零有任意偏移,因此呈现随机振幅波动。因此,只能获得渐近无抖动恢复。