文章目录
1 设计原理
1.1 载波同步的原理
载波同步又称载波恢复( carrier restoration),即在接收设备中产生一个和接收信号的载波同频同相的本地振荡( local oscillation),供给解调器作相干解调用。当接收信号中包含离散的载频分量时,在接收端需要从信号中分离出信号载波作为本地相干载波;这样分离出的本地相干载波频率必然与接收信号载波频率相同,但为了使相位也相同,可能需要对分离出的载波相位作适当的调整。若接收信号中没有离散载波分量,例如在2PSK信号中(“1”和“0”以等 概率出现时),则接收端需要用较复杂的方法从信号中提取载波。因此,在这些接收设备中需要有载波同步电路,以提供相干解调所需要的相干载波,相干载波必须与接收信号的载波严格地同频同相。
造成载波不同步的原因有:
- ·任何两个独立的振荡器都是不同步的;
- ·即便发射机和接收机使用的两个独立振荡器是同步的,电磁波在信道中的传播也会引起对接收机来说是未知的相位变化。比如电磁波的行程相位(一个波长的距离对应2π相移),绕射、反射、散射引起的附加相移等,另外多普勒现象也会引起频率抖动。通常 θ ( t ) \theta (t) θ(t)相对于信息信号是缓慢变化的,因此经常写成 的形式。这里虽然 θ \theta θ 不为0,但却是固定的,如果接收端已知其数值,则这两个载波在实质上是同步的。不过做相干解调时,需要对本地载波做相移以消除这个 θ \theta θ 。
载波提取的目的:
要在接收端建立一个和发送信号完全一致(同频同相)的本地载波(称此为相干载波或同步载波)。
提取载波的方法:
一般分为两类:
一类是不专门发送导频,而在接收端直接从发送信号中提取载波,这类方法称为直接法,也称为自同步法;
另一类是在发送有用信号的同时,在适当的频率位置上,插入一个(或多个)称作导频的正弦波,接收端就利用导频提取出载波,这类方法称为插入导频法,也称为外同步法。
本篇报告主要介绍直接法提取载波中的平方环法和科斯塔斯环(Costas环)法提取相干载波的原理,并利用MATLAB程序仿真实现科斯塔斯环(Costas环)法分别对2PSK信号和DSB信号进行载波提取并解调出原始信号。
1.1.1 平方环载波同步法原理
设调制信号为 m ( t ) m(t) m(t), m ( t ) m(t) m(t)中无直流分量,则抑制载波的双边带信号为
s ( t ) = m ( t ) ∗ cos ω c t (1.1) \text{s}(t)=m(t)*\cos {
{\omega }_{c}}t \tag {1.1} s(t)=m(t)∗cosωct(1.1)
接收端将该信号进行平方变换,即经过一个平方律部件后就得到
e ( t ) = m 2 ( t ) ∗ cos 2 ω c t = 1 2 m 2 ( t ) + 1 2 m 2 ( t ) cos 2 ω c t (1.2) e(t)={
{m}^{2}}(t)*{
{\cos }^{2}}{
{\omega }_{c}}t=\frac{1}{2}{
{m}^{2}}(t)+\frac{1}{2}{
{m}^{2}}(t)\cos 2{
{\omega }_{c}}t \tag {1.2} e(t)=m2(t)∗cos2ωct=21m2(t)+21m2(t)cos2ωct(1.2)
由上式可以看出,虽然前面假设 m ( t ) m(t) m(t)中无直流分量,但 却一定有直流分量,这是因为 m 2 ( t ) {
{m}^{2}}(t) m2(t)必为大于等于0的数,因此, m 2 ( t ) {
{m}^{2}}(t) m2(t)的均值必大于0,而这个均值就是直流分量,这样 e ( t ) e(t) e(t)的第二项中就包含 2 f c 2{
{f}_{c}} 2fc频率的分量。例如,对于2PSK信号,为双极性矩形脉冲序列,设 =±1,那么 m 2 ( t ) {
{m}^{2}}(t) m2(t)=1,这样经过平方率部件后可以得到
e ( t ) = m 2 ( t ) ∗ cos 2 ω c t = 1 2 + 1 2 cos 2 ω c t (1.3) e(t)={
{m}^{2}}(t)*{
{\cos }^{2}}{
{\omega }_{c}}t=\frac{1}{2}+\frac{1}{2}\cos 2{
{\omega }_{c}}t\tag {1.3} e(t)=m2(t)∗cos2ωct=21+21cos2ωct(1.3)
由上式可知,通过 2 f c 2{
{f}_{c}} 2fc窄带滤波器从中很容易取出 2 f c 2{
{f}_{c}} 2fc频率分量。经过一个二分频器就可以得到 2 f c 2{
{f}_{c}} 2fc的频率成分,这就是所需要的同步载波。因而,利用图1-1所示的方框图就可以提取出载波。
为了改善平方变换的性能,可以在平方变换法的基础上,把窄带滤波器用锁相环替代,构成如图1-2所示框图,这样就实现了平方环法提取载波。由于锁相环具有良好的跟踪、窄带滤波和记忆性能,因此平方环法比一般的平方变换法具有更好的性能,因而得到广泛的应用。
1.1.2 科斯塔斯环载波同步法原理
科斯塔斯(Costas)环法又称同相正交环法或边环法。相比于平方环法,它仍然利用锁相环提取载频,但是不需要对接收信号作平方运算就能得到载频输出。在载波频率上进行平方运算后,由于频率倍增,使后面的锁相环工作频率加倍,实现的难度增大。科斯塔斯环则用相乘器和较简单的低通滤波器取代平方器;这是它的主要优点。它和平方环法的性能在理论上是一样的。
图1-2中示出了其原理方框图。图中,接收信号 s ( t ) s(t) s(t)被送入二路相乘器,两相乘器输入的a点和b点的压控振荡电压分别为
v a = cos ( ω c t + φ ) (1.4) {
{v}_{a}}=\cos ({
{\omega }_{c}}t+\varphi )\tag {1.4} va=cos(ωct+φ)(1.4) v a = sin ( ω c t + φ ) (1.5) {
{v}_{a}}=\sin ({
{\omega }_{c}}t+\varphi )\tag {1.5} va=sin(ωct+φ)(1.5)
它们和接收信号电压相乘后,得到c点和d点的电压为
v c = m ( t ) cos ( ω c t + θ ) cos ( ω c t + φ ) = 1 2 m ( t ) [ cos ( φ − θ ) + cos ( 2 ω c t + φ + θ ) ] (1.6) \begin{aligned} {
{v}_{c}}&=m(t)\cos ({
{\omega }_{c}}t+\theta )\cos ({
{\omega }_{c}}t+\varphi )\\ & =\frac{1}{2}m(t)[\cos (\varphi -\theta )+\cos (2{
{\omega }_{c}}t+\varphi +\theta )]\tag {1.6} \end{aligned} vc=m(t)cos(ωct+θ)cos(ω