卷积的数学理解和图像处理

一种通俗的方法理解卷积,上面的图是一天的进食量(无时无刻不断进食),下面是食物随着时间的消化比例,求某一个时刻胃内还剩多少食物?

在某个t时刻实际上是这样对应计算的,然后把所有的计算值加起来。

 

当一个系统输入不稳定,输出稳定,就可以用卷积来求系统存量。

换一个通俗的例子,在t时刻发生了飓风,原因是在之前有很多蝴蝶扇动了翅膀,会对发生飓风产生影响,这个影响力是会随着时间的变化而变化的,这个变化函数就是g函数。卷积操作就是看在飓风发生的时候之前蝴蝶扇动的翅膀对自己产生了多少影响。

总结就是,在某一个时刻发生了一件事,而这件事情的发生是受到之前发生的很多事情的影响,g函数就是发生的事情随着时间是如何变化的,横坐标也可以改成距离等等

 那么什么是图像的卷积操作?

图像是函数f,卷积核是函数g。就是看很多像素点对某一个像素点是如何产生影响的。

卷积核就是规定了周围的像素点是如何对当前的像素点产生影响的。

比如平滑卷积操作:

 就是让周围的像素点和自己相差不要太大,其实就是求平均值,所以可以让图像变得平滑。

至于周围的多大范围像素点可以对当前像素点产生影响?那就要看卷积核的大小了。

图像卷积进行逆向的数学解释:

 可以看到实际上不是按照相应的位置进行乘积的,可以将卷积核旋转一下

 因此可以知道g函数不等于卷积核,卷积核是g函数的旋转

再来看看例子:

 这两个卷积核该怎么理解呢?

他们是分别把图像的纵向和横向的边界特征挑选了出来,咦?好像不是周围像素点对当前像素点的影响了? 

如果卷积核挑选的合适,可以对图片进行过滤,把某些特征保存下来,其他特征过滤掉,这样的卷积核也叫过滤器。

可以看作自己对周围像素点的试探,卷积核就是试探模板,当你不像考虑某个位置的时候设置成0,重点考虑就设置的值比较大,通过卷积核把周围有用的特征保留下来。

当图像完美匹配卷积核想要提取的特征时:

这种不是完美匹配,但也能提取出来里面有部分相同特征:

 

卷积操作得到与这个特征匹配的全部信息:

 

三个特征都进行卷积:

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 卷积神经网络(Convolutional Neural Network,简称CNN)是一种基于数学推导的深度学习算法,主要用于图像识别和处理。其数学推导包括了卷积运算、非线性激活函数、池化操作等。 在卷积神经网络中,卷积运算是其中一个核心概念。它通过对输入数据和滤波器(也称为卷积核)进行卷积操作,实现对输入数据的特征提取。卷积运算通过在输入数据上滑动滤波器,并将滤波器与输入数据中的对应部分相乘,然后将所有相乘的结果相加。这个过程可以通过数学推导和矩阵运算来实现,通过矩阵的乘法和求和操作,可以高效地进行卷积运算。 非线性激活函数是卷积神经网络中的另一个重要部分。它的作用是在卷积运算的结果上引入非线性变换,从而增加网络的表达能力。常见的非线性激活函数包括ReLU、Sigmoid和Tanh等。这些激活函数通过数学推导和函数的运算,将卷积运算的结果映射到一定范围内,以实现非线性的特征表示。 池化操作是卷积神经网络中的另一个关键步骤。它通过对输入数据进行降采样,减少数据的维度,从而进一步提取图像的特征。常见的池化操作包括最大池化和平均池化。最大池化选择输入数据中的最大值作为输出,而平均池化则取输入数据的均值作为输出。这些操作可以通过数学推导和简单的运算实现。 除了上述推导,卷积神经网络还包括了多层的神经网络结构、损失函数的定义、反向传播算法等。通过这些推导,我们可以更好地理解卷积神经网络的原理和工作原理,为图像处理和识别提供理论基础和数学支持。 ### 回答2: 卷积神经网络(Convolutional Neural Network, CNN)是一种主要应用于图像和语音识别等领域的深度学习算法。卷积神经网络的数学推导在一定程度上可以帮助我们理解其工作原理和运行机制。 卷积神经网络的数学推导主要涉及卷积操作和反向传播算法。首先,我们需要了解卷积操作。卷积操作是卷积神经网络中最重要的运算之一,它通常用于提取输入数据的特征。在数学推导中,卷积操作可以通过定义卷积核(或滤波器)和输入数据的卷积来实现。卷积操作的数学推导可以详细解释如何通过卷积核对输入数据进行滤波和特征提取。 另外,数学推导还包括了卷积神经网络的反向传播算法。反向传播算法是用于更新网络参数的关键步骤,通过计算损失函数对网络参数的导数,可以得到参数的梯度并进行参数更新。反向传播算法的数学推导可以详细解释如何计算网络参数的导数,并通过链式法则将梯度从输出层传播到输入层。 卷积神经网络的数学推导是一项复杂和深奥的任务,需要对线性代数、微积分和概率统计等数学知识有一定的了解。在理解和应用卷积神经网络时,对其数学推导的掌握可以提供清晰的思路和直观的认识。同时,掌握卷积神经网络的数学推导还可以帮助我们理解和处理网络中的各个参数和运算过程,进而优化和改进网络的性能。 总而言之,卷积神经网络的数学推导在一定程度上可以帮助我们理解网络的工作原理和运行机制。通过学习卷积操作和反向传播算法的数学推导,我们可以更加清晰地理解卷积神经网络的各个组成部分,为进一步的研究和应用提供基础和指导。 ### 回答3: 卷积神经网络(Convolutional Neural Networks, CNN)是一种深度学习模型,特别适用于图像处理任务。其数学推导主要集中在卷积运算和反向传播算法两个方面。 卷积运算是CNN的核心操作,它基于滤波器(Filter)对输入数据进行局部感知和特征提取。假设输入数据为二维矩阵(如图像),滤波器为一个小的二维矩阵,卷积运算通过将滤波器与输入数据的不同位置进行逐元素相乘,然后将结果求和,得到一个输出特征值。通过滑动窗口的方式,可以在整个输入数据上进行卷积运算,得到一个特征图。 在数学上,卷积运算可以表示为: \[f(i, j) = \sum_{m} \sum_{n} g(m, n) \cdot w(i-m, j-n)\] 其中,\(f(i, j)\)表示输出特征图上的某个位置的值,\(g(m, n)\)表示输入数据上的某个位置的值,\(w(i-m, j-n)\)表示滤波器的权重。这个公式可以看作是对输入数据与滤波器进行一次像素级的逐元素相乘,然后将结果求和得到输出特征图上对应位置的值。 反向传播算法是CNN中的训练算法,用于在已知标签的样本上,通过更新网络参数来最小化损失函数。数学上,反向传播算法主要涉及到对损失函数求导的过程,以确定每一层网络参数的更新方向和大小。 通过链式法则,我们可以将总损失对某一层参数的导数表示为前一层参数的导数与该层输出对该层参数的导数的乘积,这样便可以通过逐层反向传播,计算每一层参数的梯度,并利用梯度下降等优化算法来更新参数。 总结起来,卷积神经网络的数学推导主要包括卷积运算和反向传播算法。卷积运算利用滤波器对输入数据进行特征提取,而反向传播算法则用于训练网络参数。这些数学推导为CNN在图像处理等领域的应用提供了理论基础,并为算法改进和网络设计提供了方向。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值