BasesHomo 21‘ 旷视&UESTC

蓝色
紫色
红色
date: 2021-12-01 21:23:07

Motion Basis Learning for Unsupervised Deep Homography Estimation with Subspace Projection

基于子空间投影的无监督单应矩阵估计的运动基础学习

Code: BasesHomo

Abstract

提出了一种新的 无监督 深度单应矩阵估计框架,主要贡献如下:

  1. 预测的并非是四角偏移,而是一种 单应光流表示(可通过 8个预先计算的homo flow bases的加权和 求到)
  2. 提出了一个 Low Rank Representation (LRR) block 来降低运动特征的秩,来使得 特征关注于主导运动,隐式地降低运动噪声
  3. 提出了一个 Feature Identity Loss (FIL) 来保证 学习到的图像特征是 扭曲等变 的(交换 扭曲操作 和 特征提取 的顺序,还是可以保证结果一样)这样的限制下,可以实现更有效更稳定的 无监督优化,并且可以学到 更稳定的特征

1. Introduction

  Homo 是具有8个自由度的 3*3 矩阵,其中这8个自由度分别由 2个 尺度变换、平移、旋转、透视变换 构成。

  传统方式通常检测和匹配特征点对(剔除掉外点),然后通过 Direct Linear Transform (DLT) 来得到 H。

  端到端的深度单应方法,直接输出 H 。相较于严重依赖于 提取的特征点对 ,深度方法会更加鲁棒。深度方法分为监督和无监督两大类。监督学习需要真实的单应标签,合成的图像数据集缺少 深度差异 。无监督学习的泛化性更好,能够使用真实场景图像进行训练,通过最小化 光度损耗photometric loss 来训练。

  


在这里插入图片描述
关于矩阵的秩,图像feature map 的秩,还有待学习,参考 [模型剪枝]


2. Related works

Traditional - Deep 如上描述
Bases learning
关联论文:Robust recovery of subspace structures by low-rank representation.  [高引 2600+]  PAMI 12’
LSM: Learning Subspace Minimization for Low-Level Vision  CVPR 20’  Tang et al.

  LSM—面向底层视觉的子空间最小化学习

  Tang 等人 的工作 展示了在 底层视觉问题中 存在一些 子空间可以被用于正则化。

Efficient sparse-to-dense optical flow estimation using a learned basis and layers   CVPR 15’  Jonas Wulff

  PCAflow一种稀疏到稠密的光流计算方法

  PCAFlow:流估计 可以转换为 学习到的光流基(flow bases)的加权和的学习


大基线:离相机较远的场景
小基线:离相机比较近
本文适用于 小基线场景
参考链接:基于宽基线图像远距离场景的自动三维重建


3. Algorithm

Network Structure

Robust Homography Estimation by LRR

Triplet Loss with Feature Warp-Equivariance

4. Experiment

5. Conclusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值