蓝色
紫色
红色
BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering
Author From :
Abstract
NeRF在 单尺度场景下 的三维物体和可控场景建模下取得优异表现。本文聚焦于多尺度场景,在截然不同的尺度上观察到的图像具有很大的变化。这些场景在真实世界的3D环境中非常常见,例如城市场景,范围可以从捕捉城市概况的卫星层级到显示建筑复杂细节的地面层级,也可以在景观和精致的3D模型中看到。在这些场景中,较宽的观察视点距离会带来具有不同细节级别和空间覆盖范围的多尺度数据,这给普通NeRF带来了巨大挑战,并走向一种折衷的结果。为了解决以上问题,本文提出了 BungeeNeRF,一种可以在剧烈变化的尺度上实现 不同细节级别的渲染 的渐进式神经辐射场。从使用一个全局的较粗糙的Base Block来适应远距离视点开始,随着训练的进行,新的Block被附加到越来越近的视图中以适应新出现的细节【由粗到精】。该策略逐步激活了NeRF位置编码输入中的高频通道 ,并随着训练的进行逐步展开更复杂的细节。本文证明了BungeeNeRF在对多种数据源(城市模型、合成数据和无人机捕获的数据)的不同多尺度场景进行建模时的优越性,且它支持对不同细节层次都能进行高质量渲染。