线性回归策略,优化,案例(正规方程代码)

损失函数(误差大小)

在这里插入图片描述

如何去求模型当中最合适的w使得误差最小?

  1. 最小二乘法只正规方程(不做要求)

在这里插入图片描述

  1. 最小二乘法只梯度下降(理解过程)
    在这里插入图片描述

sklearn线性回归正规方程,梯度下降API

  • 正规方程
  • sklearn.linear_model.linearRegression
  • 梯度下降
  • sklearn.linear_model.SGDRegressor

波士顿房价数据集分析流程

  1. 波士顿地区房价数据获取
  2. 波士顿地区房价数据分割
  3. 训练集与测试机数据标准化处理
  4. 使用最简单的线性回归模型LinearREgression和梯度下降估计SGDREgressor对房价进行预测

利用正规方程求解boston房价预测

from sklearn.datasets import load_boston # 波士顿房价数据集使用API
from sklearn.linear_model import LinearRegression,SGDRegressor ##回归预测时使用的API
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler ## 标准化API
def myLinear():
    """线性回归直接预测房子价格"""
    # 获取数据
    lb=load_boston()
    # 分割数据集
    x_train,x_text,y_train,y_text=train_test_split(lb.data,lb.target,test_size=0.25)

    # 进行标准化处理
    std_x=StandardScaler()
    x_train=std_x.fit_transform(x_train)
    x_text=std_x.transform((x_text))
    #目标值
    std_y=StandardScaler()
    y_train=std_y.fit_transform(y_train)
    y_text=std_y.transform(y_text)
    #调用预测
    lr=LinearRegression()
    lr.fit(x_train,y_train)
    print(lr.coef_)
    # 预测测试集房子价格
    y_predict=std_y.inverse_transform(lr.predict(x_text))
    print("测试集每个房子的预测价格:",y_predict)
if __name__ == '__main__':
    myLinear()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值