探索路上永不止步:区块链驱动广告透明和安全


1. 区块链的繁华和挑战


“人工智能”“区块链"是不少大公司押宝的两个技术引擎。人工智能解决“数据赋能”的问题,区块链有希望解决“信任”的问题。举例来说,发行一种货币也许不需要太多的“科技能力",但需要权威,共识性和信心的背书。这种背书通常是来自于国家政府,但基于区块链的比特币(BitCoin)却是一种去中心化的数字货币,却能获得众多参与者的“信任”。


区块链所带来的“信任”正在努力渗透在各个需要信任的行业和应用中,金融是一个亟需信任和监督的行业,这也解释了为什么那么多金融行业是对区块链青睐有加和情有独钟。很多行业也有类似问题,需要去中心话的“信任”来净化行业或提升效率,区块链会成为越来越重要的基础架构。区块链是一种全新的技术架构,特性包括中性化,数据不可篡改,开源实现等,这些技术能力正在积极的影响包括在银行,保险等各个行业。


区块链和互联网广告能否擦出火花,或者这只是诗和远方?


首先看一看最近区块链的应用新闻。


2017年,3月,上海保交所联合国泰人寿、北大方正人寿、友邦人寿、中国大地财险,陆家嘴,民生人寿等9家保险机构参加区块链数据交易技术验证,致力于解决保险业在征信方面长期存在的痛点、难点。


2017年,4月, 国内银行业已有邮储银行、招商银行、光大银行、微众银行等推出基于区块链的金融应用,涉及资产托管、跨境清算、联合放贷等方面,联合研究区块链应用,研发相关产品。


2017,4月,IBM推区块链医药零售供应链平台, 区块链平台是基于Hyperledger Fabric,其中该区块链平台的参与者包括禾嘉股份有限公司、一家药商、一家医院和一家融资银行。


2017,4月,  三大音乐版权协会正携手IBM共同构建一个防止盗版的区块链解决方案。 三大协会是美国古典音乐作曲家、作家及出版商协会,美国作家古典音乐作曲家及音乐出版商协会,音乐版权协会(PRS for Music)。


2017,3月,万达网络首次对外公布区块链整体布局, 万达区块链应用的全景图包括区块链智慧供应链、区块链智慧医疗、区块链交易所以及区块链电子发票四个方面。


区块链从来不缺繁华,也从来不缺少质疑和挑战,行业真正创新的事情都是在挑战中坚持下来的创新,这种感觉,有点像20年前的Linux 。大家不断的尝试Linux,不断的受挫(IDE无可直视,驱动不兼容,性能和安全等等),连绵不断的正负报道。区块链也是这样,不断被各种正面和负面观点包围,不断的实践和前行,我相信这些尝试都是推动区块链前行的重要力量。


下面是“区块链"在谷歌趋势中的走势,一直处于上升阶段。



2. 区块链的技术定位


这一节介绍一下区块链的技术了。下面这个图,我认为最能表达区块链本身的价值定位。区块链就是一个基础架构,打个比方就像HTTPS一样,能够保证上面的数据安全。当然,区块链比HTTPS复杂的多,还可以实现很多P2P,部分存储,交易等场景。有了这一强大的基础架构,区块链上层的应用开发就会变得简单很多。技术上说,区块链是一种分布式的技术基础架构,通过将相同的数据块(区块链的来源)分别保存到所有的节点,以达到分布式记账的效果。这样,如果一个节点想修改账本,需要买通51%的节点(或则有其它mission impossible 的难度)。区块链是一种技术栈。以前开发这样一个不可篡改,分布式数据存储,成本非常高,现在变得很简单,可以通过区块链的基础架构来轻松完成。



3. 不得不说的比特币


区块链来自于比特币的技术,比特币实现来源一篇神秘的论文,作者匿名为 中本聪,实际身份难以考证,据说是日本一个密码学家,或者是澳大利亚一个企业家。中本聪持有的比特币据说已经价值好几亿美元了。这估计是”知识就是财富“的最成功的案例了。


比特币价格在过去几年,稳定上升,成为一种有价值的数字资产。不少朋友已经投资一些比特币,等待继续升值,或进行中美资产的转移,省去各种外汇管制的麻烦。




简单说一下比特币的技术实现,希望能说清楚。


比特币是一种P2P的数字货币,没有中央的发行单位。它的产生和转移,都是开源的技术和方法。比特币是区块链(工作量证明)+P2P(分布式网络)+加密账本的一个集成体

·


关于账本,中本聪在论文中进行了一些说明,要对现有用户账簿进行如下核心改造,这是比特币的核心思想,其它技术细节都是为这两点服务的:

  1. 账簿上不再记载每个用户的余额,而只记载每一笔交易。即记载每一笔交易的付款人、收款人和付款金额。只要账簿的初始状态确定,每一笔交易记录可靠并有时序,当前每个人持有多少钱是可以推算出来的。

  2. 账簿由私有改为公开,只要任何用户需要,都可以获得当前完整的账簿,账簿上记录了从账簿创建开始到当前所有的交易记录。

比特币的角色

  1. 比特币持有者(用户):他们有一个账号和密码,管理他们的比特币资产;

  2. 挖矿者(维护比特币分布式系统):这些矿工运行大量的挖矿程序,用于维护整个比特币系统的稳定,创建区块(Block),作为回报矿工有机会得到劳务费(比特币)。

  3. 交易平台(交易市场):这是比特币的应用层,用户可以通过这个交易市场发起或则查看比特币交易情况。例如,从本国货币到比特币的转化。

  4. 比特币系统(运行规则):所有运行规则都在开放源代码中,公开和透明,用于维护用户,矿工,交易市场的平衡

  5. 总共大约有2000万比特币,目前已经有主人的比特币大约为1300万个,剩下的比特币的挖掘工作会越来越慢(难),按照目前规则,大约2140年可以挖完。

 

比特币技术实现基础原理


a)基本概念:

  • 在比特币中,没有中心控制部分对每个账号的资金变化进行集中管理。

  • 每个矿工/比特币系统的客户端都维护一个从第一天到现在的所有交易情况:x个比特币从A到B;这个文件大约有8G;


b)交易过程:


  • 发起请求:比特币客户端可以发起一个请求:希望从A到B转移x个比特币。通过RSA非对称加密算法,可以确认请求确实是从A发起的,B是一个有效账号。


  • 广播:“A->B转移X比特币”这个消息会发送给附近的矿工/比特币节点,每个矿工都会根据历史上所有的交易情况,确认A有足够的比特币进行交易。


  • 本地确认&再广播:如果矿工根据本地的信息,确认交易成立,那么矿工又会吧这个交易信息发送给周围的所有矿工来确认。向一个涟漪一样,很快可以波及全世界的区块链节点。


  • 区块形成:每一段时间的交易都会形成一个block,这个block就是区块链中区块的来源。


  • 打包权:有了block之后,系统需要确认这个block,这个确认过程叫做打包权,打包好了,这个block就是得到整个系统的官方确认.



c) 共识算法:工作量证明

        问题来了:谁来确定和签署这个block?每个人都想有最后的决定权。由于是去中心化的,因此如何让一群参与者共同承认一个观点,到底听谁的,这就是“共识算法”需要解决的问题。共识算法有很多种,下面介绍两种主要的:


  • 工作量证明(Proof of Work):利用hash函数的单向计算的随机性和复杂性,设计一个hash码,要求算出其原文,如果hash码越复杂,要求越高计算量也就越大,例如规定hash码前有12个0。目前,比特币中的hash码,以目前计算能力来看,通常需要10分种完成,未来通用计算机计算能力强了,这个hash码可能引入更加复杂的规则和位数。由于所有的矿工都在进行大量的无意义计算(为了计算出hash原文),因此比特币的能耗确实是一个大问题。有哲学角度而言,货币就是一种过去的“工作量证明“。


  • 权益证明(Proof of Stake):工作量证明是通过计算能力来分配决定权,权益证明可以弥补这一问题,权益证明几乎不需要耗费能量。它的基本原理是所有持有货币的成员参加共识过程,计算过程使用了Hash方式,每个节点成员广播Hash(PreBlock+ 自己的PublicKeyHash), 每个节点也评估所有参与的Hash值,并且根据公平公开的公式进行评估,得分最高的。 整个比赛过程的打分步骤是固定的,其随机性来源于参与比赛的数据链式准备。参加节点在参与过程中,需要支付一些交易费用,虽然不多,但是确实增加了参加的门槛,但是也适当的净化了参与者的环境,收费才是长久之道。


4. 互联网广告的痛点


 说了这么多前序,还是聊聊今天想聊的。


 当前互联网广告面临着几大挑战,照成整个行业的不公开,不透明。

    1)虚假流量和数据:不靠谱的流量和运营的数据报告。

    2)数据协作的安全和可信:如何共建数据,把数据流动起来,协作起来发挥数据价值,有很多信任,安全的障碍。

    3)广告效果可信评估:大型广告的投放都是跨媒体的,究竟哪个媒体效果好,如何科学的分析。最简单的问题,我们都放是不是都投放给女性客户? 一家公司很难做出精准回答,即使是专业的数据监测公司。真正的真理可能来自多个可信数据源的协作,而且不能是采样数据,必须是全数据,实时数据。


区块链在数据不可篡改,去中心化,安全方面都是非常有优势的,很有希望能够解决这些痛点问题。国内外都在尝试利用区块链的技术,推动数据营销行业向更加健康的方向发展。



5. 区块链在广告行业的探索先锋


5.1)小米


2017年4月 ,小米营销提出区块链解决营销痛点的建议,呼吁行业共建安全,透明的营销生态。小米营销在过去半年中,积极探索和实践区块链在移动营销上的应用,这也是半年思考和探索的一个小结。


痛点1:数据打通(Onboarding)。以小米和某国际快消品牌共建DMP(数据管理平台)为例,在完全保护用户隐私的前提下,通过用户信息匹配,二者成功实现数据打通,但问题是,数据打通是通过用户信息来匹配的,该品牌把所有信息都给到小米,势必会担心数据泄露,反之亦然,这个时候就需要找第三方来操作,这里就涉及到信任问题,大家不敢把数据随便共享出来,数据资产和物理资产是不一样的。结果,各个大公司都在建围墙花园,小公司建小作坊。对于整个行业,处处是数据孤岛和资源浪费。区块链技术能帮助解决这一难题,能为各个玩家提供一个去中心化的、安全透明的数据交换平台。


痛点2:反作弊(Anti-Fraud)。小米通过大数据积累和智能硬件技术已形成高效反作弊解决方案,分别从设备验证、用户行为、非正常行为等多维度进行反作弊。在前两个层次,小米有着独特的优势,特别是在硬件设备方面,小米独有的硬件能力辨别机器真伪,能够保证100%的设备真实性。


小米的反作弊优势已经成功运用在小米金融和小米网的运营上。虽然小米有着强大的反作弊解决方案,但是却无法输出至第三方。表现在离开了小米生态系统,这个安全就得不到保障。而区块链技术就能提供解决方案,它能构建一个平台,将小米以及其他优秀的反作弊能力,安全透明的输出出去,实现去中心化的共享。



痛点3:运用区块链解决IP不一致(IP Discrepancy),可以将投放请求环节相互关联,协助不一致性的排查,降低不一致的比率。第三个是IP不一致的问题,以一次程序化购买为例,假如我们发出一个请求,得到广告响应显示之后,中间会因为时间差或者别的原因产生 IP漂移,导致大概7%—8%IP统计不上。而且由于数据沟通是割裂开的所以无法验证,目前测量报告也没有合理的标准。比如在一次广告交易中,定向监测北京地区的IP数据,但是有时间差、发生IP漂移,最终导致数据监测失真。运用区块链解决方案就可以将投放请求环节相互关联,协助不一致性的排查,降低不一致的比率。


长远来来看,国内营销玩家可以一起推动Ad Tech联盟区块链的发展,一起推动数字营销的透明和安全,推动产业的健康发展。下图是小米对于Ad Tech 联盟区块链的一些初步想法和场景。


参考:http://e.mi.com


5.2 美国 AdChain(MetaX)


2017年,3月,美国广告技术公司MetaX推出了“adchain”,使用blockchain分布式帐本记录创意的投放情况,例如在创意上增加一个数据上报点,记录在adChain中,这样投放情况就会变得更加透明,并且无法篡改,这些数据可以精准可靠的帮助广告主和媒体提高运营的效率和准确性。


判断一个曝光是否真实的理论模型,在adchain看起来就像这样:买方(广告主的代理方)购买的曝光会被加密存储到一个区块上,然后广播到区块链上的每一个参与节点。 该曝光由发布商(媒体)验证,然后添加到分布帐本上。 区块链上的每个节点都可以看到展示事件并批准它。



这一想法和小米提出来的透明效果监测的探索也非常接近。


参考:www.metaxchain.com


5.3 美国NYIAX 


2017年,3月,纳斯达克宣布将于今年晚些时候推出纽约互动广告交易所(NYIAX),该交易所将使用区块链技术出售库存。 它以不同的方式使用区块链:智能合同,它允许在使用区块链来促进交易时,只要条件得到满足,某些合同将会自动执行。  它旨在为广告市场中的参与者提供更有效且更为透明的方式来销售并购买广告资源。


研究了一下NYIAX,感觉特别像当年的网盟,网盟是通过自己的技术平台,连接广告主和媒体;然而,NYIAX希望通过基于区块链来构建技术平台:去中心化,不可篡改,数据透明,甚至比特币结算等。


这是一个新瓶旧酒的典型,用区块链去包装网盟的业务。网盟是一个'龙蛇混杂'和'声名狼藉'的业务,这次看看纳斯达克是否能够将网盟业务洗洗白!



网站:https://nyiax.com/


5.4 美国MadHive 


MadHive是一家利用区块链技术帮助品牌广告主和媒体提升营销效率,它支持跨平台的场景,主要提供各种视频,数据服务业务和OTT的营销公司。


MadHive主要是使用私有区块链帮助媒体品牌广告主提高数据透明和效率,具体形式没有太多公开报道。从CEO的一下谈话中,大约能够感受到几点。


  • 想法:
    MadHive使用私有区块链解决数据透明的问题。MadHive希望通过区块链成为媒体和品牌广告主沟通的直接的,可信的环境。尝试建立一个开放的DMP,将数据能力赋予广告主和媒体,除去中间环节;记录和验证投放的和过程和效果。


  •  产品:

    MadHive已经发布了“ MadHive Interactive Stamp”,用于在OTT前端(例如电视视频)中检测播放数据,并且链接后面的区块链基础架构。基于区块链的技术解决方案计划在2017年Q2推出。 


参考:http://www.madhive.com


5.5 BitTeaser&HubDSP


BitTeaser是一家AdNetwork公司,覆盖了超过1000个网站。相比普通的网盟公司,BitTeaser采用了一种BTSR的数字货币(BTSR)作为结算方式,广告主/媒体为什么需要使用BTSR作为结算单位呢? 其中有两点有意思的优势:


  • BSTR可以帮你增值,他是一种像比特币一样的P2P2货币。

  • BSTR支付可以让你做全球的生意,不需要考虑结算的汇率和货币单位等问题。


BitTeaser运行不长时间就碰到很多运营困难而停止运作了。这家公司转型为HubDSP,回到了传统的DSP业务中,先解决公司生存的问题。宇宙第一法则就是“先生存”,“再发展"。


https://bitteaser.com/ (已经废弃)

http://HubDSP.com



6.在探索的路上,永不止步


很多人会认为,这一些都是美好的,但这一切也都是为时过早的,因为现在数字广告错综复杂和根深蒂固的利益关系。但是,我还是相信,在大广告主真正理解区块链的含义,对数据安全和透明有进一步诉求之后,他们可能会成为AdTech联盟链的强烈需求方,从预算的角度推动行业的健康升级。


在探索的路上,我们永不止步,在创新的路上,我们永不停留!



我的相关参考文章


广告技术:

移动广告作弊流量的浅潜规则

互联网广告的归因分析(Attribution Analysis) 

MarTech是广告主视角的的营销,技术和管理

广告点击率预估是怎么回事?

“自由即奴役”的Google AMP

两分钟搞明白Beacon,iBeacon和EddyStone

预算平滑(Budget Smooth)是怎样花钱的?

互联网广告CPM,CPC,CPA的魔咒和圣杯

拒绝垄断,走向开放的Header Bidding

自由之设备,独立之人格:从设备识别到跨屏营销

DSP的繁华和伤心

移动DeepLink的前生今世

谈谈广告平台的竞价原理:GFP,GSP,VCG

聊一聊小米广告平台的构建、底层模块和坑


广告行业:

广告技术有什么好会议吗?


Java技术:

Java 9的模块化--壮士断"腕"之涅槃

致青春,Java 20年!


大数据分析:

逆流而上,独辟蹊径的Oracle Exadata数据库

彪悍开源的分析数据库-ClickHouse


我的大数据书:

作者介绍:


欧阳辰,小米MIUI商业产品部 架构师/主管,《Druid实时大数据分析》书作者,超过16年的互联网老兵,负责广告平台架构和数据平台,曾负责微软移动Contexual Ads广告平台,参与Bing搜索引擎IndexServe的核心模块研发,有空也会在个人微信公众号“互联居”中,分享一些互联网技术心得,订阅“互联居”公众号,与作者直接交流。


1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值