Learning Time-Series Shapelets

Shapelets是时间序列中最能预测目标变量的判别子序列。由于这个原因,shapelet的发现最近在时间序列研究界引起了相当大的兴趣。目前,通过评估从一系列片段中提取的众多候选片段的质量来发现shapelets。与最新的研究成果相比,本文提出了一种新的学习方法。提出了一种新的基于分类目标函数的任务数学形式化方法,并采用了量身定制的随机梯度学习算法。该方法能够直接学习接近最优的shapelets,而不需要尝试大量的候选样本。此外,我们的方法可以通过捕获它们的交互来学习真正的top-K shapelets。大量的实验表明,在28个时间序列数据集的13个基线上,在获胜和排名方面有统计学上的显著改善

Distances Between Shapelets and Series

Shapelet Transformation

 A Novel Principle

 Objective Function 

1)Learning Model

2)Loss Function 

 3)Regularized Objective Function

 近似:

 Gradients for Shapelets

式8定义了shapelet k中l点对第i个时间序列目标的梯度,并通过链式求导法推导

 

 

Gradients for Classification Weights 

 Learning Algorithm

 

 

<think>嗯,用户想了解BasicMotions数据集的相关信息,包括下载、使用说明和特征介绍。首先,我需要回忆一下这个数据集的基本情况。BasicMotions是一个多变量时间序列分类(MTSC)数据集,常用于动作识别研究。它可能包含来自不同传感器的数据,比如加速度计和陀螺仪,记录不同动作的信号。 接下来,用户需要下载和使用说明。我应该先确认数据集的官方来源,比如UCI Machine Learning Repository或者Timeseries classification website。然后,检查是否有标准的加载方法,比如通过Python的sklearn或专门的库如tslearn。需要确保提供正确的代码示例,帮助用户直接加载数据。 关于特征介绍,数据集可能有多个变量(传感器通道),每个变量对应不同的运动特征,比如x、y、z轴的加速度和角速度。可能需要引用用户提供的参考内容中的信息,比如文献[^2]提到的basicmotion数据集中发现的shapelets来自第一个和第五个变量,分别对应x轴加速度和z轴角速度。这说明数据集中的变量有不同的物理意义,对分类任务有重要作用。 用户的问题中还提到数据集的应用场景,比如在多变量时间序列分类中使用Transformer模型,但现有方法可能忽略了类别特定特征,导致在类似模式的数据集上表现不佳。需要指出BasicMotions适合用于这类研究,尤其是在需要捕捉细节差异的任务中。 最后,生成相关问题时,要围绕数据集的使用、特征分析、模型应用和优化方法展开,帮助用户深入理解如何应用该数据集。同时,确保所有数学公式和代码块格式正确,符合用户提供的系统级指令要求。</think>### BasicMotions数据集信息 #### 1. **数据集简介** BasicMotions是一个多变量时间序列分类(MTTC)数据集,常用于人体动作识别任务。它通过传感器(如加速度计、陀螺仪)记录不同动作的物理信号,适合研究时间序列模式分类与特征提取[^1]。 #### 2. **下载与加载方式** - **官方来源**:可通过以下平台获取: - [Timeseries classification website](https://timeseriesclassification.com/description.php?Dataset=BasicMotions) - [UCI Machine Learning Repository](https://archive.ics.uci.edu/)(需搜索关键词) - **Python加载示例**(使用`sklearn`或`tslearn`库): ```python from sktime.datasets import load_basic_motions X_train, y_train = load_basic_motions(split="train") X_test, y_test = load_basic_motions(split="test") ``` #### 3. **特征与数据结构** - **变量维度**:包含6个传感器通道(即6个变量),通常对应三轴加速度计和三轴陀螺仪数据。 - **时间步长**:每条样本时间序列长度为100。 - **类别标签**:4种基础动作(如站立、行走、跳跃等)。 - **关键特征示例**(引用文献): - **S1**(来自第1个变量):描述x轴加速度的局部模式。 - **S2**(来自第5个变量):描述z轴角速度的显著变化。 #### 4. **典型应用场景** - 验证多变量时间序列分类模型(如Transformer、ShapeNet)的性能。 - 研究类别间细节差异对分类的影响(如相似动作的细微特征区分)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值