矩阵的秩
秩其实就是刻画了:秩就是线性无关列(行)向量的最大数目。
一个重要的结论是:行秩等于列秩。
设
A
A
A是一个
m
×
n
m \times n
m×n 的矩阵,其列秩为
r
r
r . 因此
A
A
A的列空间的维度是
r
r
r . 令
c
1
,
c
2
,
…
,
c
r
c_{1},c_{2}, \ldots ,c_{r}
c1,c2,…,cr 是
A
A
A 的列空间的一组基,构成
m
×
r
m\times r
m×r 矩阵
C
C
C的列向量
C
=
[
c
1
,
c
2
,
…
,
c
r
]
C=[c_{1},c_{2},\ldots ,c_{r}]
C=[c1,c2,…,cr],并使得
A
A
A 的每个列向量是
C
C
C的
r
r
r 个列向量的线性组合.
那么存在一个
r
×
n
r \times n
r×n矩阵
R
R
R, 使得
A
=
C
R
A = CR
A=CR.
A
A
A 的
(
i
,
j
)
(i,j)
(i,j) 元素是
c
i
c_i
ci 与
R
R
R 的第
j
j
j 个行向量的点积.
现在,由于 A = C R A = CR A=CR, A A A 的每个行向量是 R R R 的行向量的线性组合,这意味着 A A A 的行向量空间被包含于 R R R 的行向量空间之中. 因此 A A A 的行秩 ≤ R R R的行秩. 但 R R R仅有 r r r行, 所以 R R R的行秩 ≤ \le ≤ r r r = A A A的列秩. 这就证明了 A A A的行秩 ≤ A ≤ A ≤A的列秩.
考虑
A
A
A的转置矩阵
A
T
A^\mathrm{T}
AT,则A的列秩 =
A
T
A^\mathrm{T}
AT的行秩
≤
A
T
≤ A^\mathrm{T}
≤AT的列秩 =
A
A
A的行秩.
即:
A
A
A的列秩
≤
A
≤ A
≤A的行秩.
综上,
A
A
A的列秩
=
A
= A
=A的行秩. 证毕.
Ref
https://zh.wikipedia.org/wiki/%E7%A7%A9_(%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0)