今天我们来讲讲奇异值分解和它的一些有意思的应用。奇异值分解是一个非常,非常,非常大的话题,它的英文是 Singular Value Decomposition,一般简称为 SVD。下面先给出它大概的意思:
对于任意一个 m×n 的矩阵 M ,不妨假设 m>n ,它可以被分解为
其中
- U 是一个 m×n 的矩阵,满足 UTU=In , In 是 n×n 的单位阵
- V 是一个 n×n 的矩阵,满足 VTV=In
- D 是一个 n×n 的对角矩阵,所有的元素都非负
- 先别急,我看到这个定义的时候和你一样晕,感觉信息量有点大。事实上,上面这短短的三条可以引发出 SVD 许多重要的性质,而我们今天要介绍的也只是其中的一部分而已。
-
前面的表达式 M=UDVT 可以用一种更容易理解的方式表达出来。如果我们把矩阵 U 用它的列向量表示出来,可以写成
U=(u1,u2,…,un)其中每一个 ui 被称为 M 的左奇异向量。类似地,对于 V ,有
V=(v1,v2,…,vn)它们被称为右奇异向量。再然后,假设矩阵 D 的对角线元素为 di (它们被称为 M 的奇异值)并按降序排列,那么 M 就可以表达为
M=d1u1vT1+d2u2vT2+⋯+dnunvTn=∑i=1ndiuivTi=∑i=1nAi其中 Ai=diuivTi 是一个 m×n 的矩阵。换句话说,我们把原来的矩阵 M 表达成了 n 个矩阵的和。
这个式子有什么用呢?注意到,我们假定 di 是按降序排列的,它在某种程度上反映了对应项 Ai 在 M 中的“贡献”。 di 越大,说明对应的 Ai 在 M 的分解中占据的比重也越大。所以一个很自然的想法是,我们是不是可以提取出 Ai 中那些对 M 贡献最大的项,把它们的和作为对 M 的近似?也就是说,如果令
Mk=∑i=1kAi那么我们是否可以用 Mk 来对 Mn≡M 进行近似?
答案是肯定的,不过等一下,这个想法好像似曾相识?对了,多元统计分析中经典的主成分分析就是这样做的。在主成分分析中,我们把数据整体的变异分解成若干个主成分之和,然后保留方差最大的若干个主成分,而舍弃那些方差较小的。事实上,主成分分析就是对数据的协方差矩阵进行了类似的分解(特征值分解),但这种分解只适用于对称的矩阵,而 SVD 则是对任意大小和形状的矩阵都成立。(SVD 和特征值分解有着非常紧密的联系,此为后话)
我们再回顾一下,主成分分析有什么作用?答曰,降维。换言之,就是用几组低维的主成分来记录原始数据的大部分信息,这也可以认为是一种信息的(有损)压缩。在 SVD 中,我们也可以做类似的事情,也就是用更少项的求和 Mk 来近似完整的 n 项求和。为什么要这么做呢?我们用一个图像压缩的例子来说明我们的动机。
我们知道,电脑上的图像(特指位图)都是由像素点组成的,所以存储一张 1000×622 大小的图片,实际上就是存储一个 1000×622 的矩阵,共 622000 个元素。这个矩阵用 SVD 可以分解为 622 个矩阵之和,如果我们选取其中的前 100 个之和作为对图像数据的近似,那么只需要存储 100 个奇异值 di ,100 个 ui 向量和 100 个 vi 向量,共计 100×(1+1000+622)=162300个 元素,大约只有原始的 26% 大小。
【注:本文只是为了用图像压缩来介绍 SVD 的性质,实际使用中常见的图片格式(png,jpeg等)其压缩原理更复杂,且效果往往更好】
为了直观地来看看 SVD 压缩图像的效果,我们拿一幅 1000×622 的图片来做实验
可以看出,当取一个成分时,景物完全不可分辨,但还是可以看出原始图片的整体色调。取 5 个成分时,已经依稀可以看出景物的轮廓。而继续增加 k 的取值,会让图片的细节更加清晰;当增加到 100 时,已经几乎与原图看不出区别。
接下来我们要考虑的问题是, Ak 是否是一个好的近似?对此,我们首先需要定义近似好坏的一个指标。在此我们用 B 与 M 之差的 Frobenius 范数 ||M–B||F 来衡量 B 对 M 的近似效果(越小越好),其中矩阵的 Frobenius 范数是矩阵所有元素平方和的开方,当其为 0 时,说明两个矩阵严格相等。
此外,我们还需要限定 Ak 的“维度”(否则 M 就是它对自己最好的近似),在这里我们指的是矩阵的秩。对于通过 SVD 得到的矩阵 Mk ,我们有如下的结论:
在所有秩为 k 的矩阵中, Mk 能够最小化与 M 之间的 Frobenius 范数距离。
这意味着,如果我们以 Frobenius 范数作为衡量的准则,那么在给定矩阵秩的情况下,SVD 能够给出最佳的近似效果。万万没想到啊。
在R中,可以使用
svd()
函数来对矩阵进行 SVD 分解,但考虑到 SVD 是一项计算量较大的工作,我们使用了 rARPACK 包中的svds()
函数,它可以只计算前 k 项的分解结果。完整的 R 代码如下:library(rARPACK); library(jpeg); factorize = function(m, k) { r = svds(m[, , 1], k); g = svds(m[, , 2], k); b = svds(m[, , 3], k); return(list(r = r, g = g, b = b)); } recoverimg = function(lst, k) { recover0 = function(fac, k) { dmat = diag(k); diag(dmat) = fac$d[1:k]; m = fac$u[, 1:k] %*% dmat %*% t(fac$v[, 1:k]); m[m < 0] = 0; m[m > 1] = 1; return(m); } r = recover0(lst$r, k); g = recover0(lst$g, k); b = recover0(lst$b, k); m = array(0, c(nrow(r), ncol(r), 3)); m[, , 1] = r; m[, , 2] = g; m[, , 3] = b; return(m); } rawimg = readJPEG("pic2.jpg"); lst = factorize(rawimg, 100); neig = c(1, 5, 20, 50, 100); for(i in neig) { m = recoverimg(lst, i); writeJPEG(m, sprintf("svd_%d.jpg", i), 0.95); }