photonics insights综述文章简读: 信息超表面与智能超表面 Information metasurfaces and intelligent metasurfaces

在这里插入图片描述

信息超表面和智能超表面的最新进展

摘要

近二十年来,超材料和超表面因其在控制材料参数和电磁特性方面的卓越性能而引起了全世界的兴趣。然而,由于超材料和超表面的模拟性质,大多数关于它们的研究都集中在电磁场和波的操纵上。2014年提出的数字编码和可编程元表面的概念,开辟了以数字方式表征和设计元表面的新视角,使电磁场/波的控制和数字信息的处理同时成为可能,从而产生了信息元表面的新方向。另一方面,人工智能在超表面的自动设计中变得越来越重要。在这篇综述文章中,首先展示了信息元表面的内在性质和优势,包括信息操作、可编程和实时控制能力以及时空编码策略。然后介绍了利用人工智能技术设计超表面的最新进展,并特别讨论了信息超表面与人工智能的紧密结合以生成智能超表面。我们提出了自适应智能超表面、基于人工智能成像仪、微波相机和基于光学神经网络的可编程人工智能机器。最后,指出了信息和智能超表面的挑战、应用和未来方向。

1. 引言

超材料和超表面在过去二十年里因其在控制材料参数和电磁特性方面的非凡性能而引起了全世界的兴趣。然而,由于其模拟性质,大多数关于超材料和超表面的研究都集中在电磁场和波的操控上。2014年提出的数字编码和可编程超表面概念开辟了一个新的视角,使得以数字方式表征和设计超表面成为可能,并能够同时控制电磁场/波和处理数字信息,从而诞生了信息超表面这一新方向。

另一方面,人工智能(AI)在超表面自动设计中变得越来越重要。本综述文章首先展示了信息超表面的内在性质和优势,包括信息操作、可编程和实时控制能力以及时空编码策略。然后介绍了使用AI技术设计超表面的最新进展,特别讨论了信息超表面与AI的紧密结合,以产生智能超表面。

本文还介绍了自适应智能超表面、基于AI的智能成像仪、微波相机以及基于光学神经网络的可编程AI机器。最后,指出了信息超表面和智能超表面的挑战、应用和未来方向。两个领域的发展时间表如下

在这里插入图片描述

2. 信息超表面

2.1 信息超表面的概念和理论

信息超表面源于2014年提出的数字编码和可编程超表面概念,它将数字信息与物理超结构相结合。这一概念为我们提供了一个新的角度来用数字方式表征超表面,并通过空间编码序列来控制电磁功能。

信息超表面的核心理论主要包括三个方面:散射场表达式、卷积定理和信息熵。这些理论为信息超表面的设计和应用奠定了基础。

2.1.1 散射场表达式

对于具有特定数字位状态的相位编码超表面,其相位分布可以表示为数字矩阵。当超表面被平面波照射时,散射场可以用以下表达式描述:

F(θ, φ) = ∑[M,m=1] ∑[N,n=1] exp{j[φ(m,n) + k₀Dₓ(m-1/2)sinθcosφ + k₀Dy(n-1/2)sinθsinφ]}

其中:

  • F(θ, φ) 是散射场
  • MN 是 x 和 y 方向上的元件数量
  • DₓDy 是 x 和 y 方向上的元件尺寸
  • k₀ 是自由空间波数
  • φ(m,n) 是位于 (m,n) 位置的元件的反射相位响应
  • θφ 分别是仰角和方位角

2.1.2 卷积定理

卷积定理提供了一种灵活的方法来操控散射场。它表明,两种编码模式的叠加效果等同于它们各自散射场的叠加:

θ = arcsin(√[sin²θ₁ + sin²θ₂])
φ = arctan(sinθ₁ / sinθ₂)

其中 θφ 是合成散射角,θ₁θ₂ 是两个原始编码模式的散射角。

2.1.3 信息熵

信息超表面的信息熵包括几何信息熵和物理信息熵:

信息熵是信息超表面理论中的一个核心概念,它提供了一种量化信息超表面编码模式和散射特性的方法。在信息超表面中,信息熵分为两种类型:几何信息熵和物理信息熵。对于周期性编码模式如"010101…",其几何信息熵较低,对于随机编码模式,其几何信息熵较高。物理信息熵与超表面的散射特性相关,它描述了散射场的复杂度和信息量。例如单一波束反射的物理信息熵较低,多波束或散射波束的物理信息熵较高。编码元表面为研究信息元表面的信息容量和信息边界铺平了重要的道路。

总之,信息熵概念的引入为信息超表面的设计和分析提供了一个强大的工具,它不仅帮助我们理解编码模式和散射特性之间的关系,还为优化超表面性能和实现新功能开辟了道路。这一概念的应用大大推进了信息超表面的理论研究和实际应用。

2.2 可编程超表面

可编程超表面能实现电磁功能的实时控制和重构。通过集成有源器件,如二极管和变容二极管,可以重新配置电磁结构,从而实现各种功能。

2.2.1 可重构的等离激元拓扑绝缘体

最近,研究人员提出了一种场可编程拓扑电磁超表面,基于表面等离子体。这种超表面具有以下特点:
在这里插入图片描述

  1. 结构设计

    • 蜂窝状排列的单元结构,每个单元包含六个对称分布的PIN二极管。
    • 每个单元有四种编码状态(0, 1, 2, 3),通过控制二极管的开关状态来实现。
  2. 动态调控

    • 通过FPGA控制二极管的开关状态,可以调节单元结构的空间对称性。
    • 通过配置不同形状的编码区域,可以构建各种类型的拓扑区域边界线。
  3. 高速切换

    • 每个单元都具有动态编码功能,可以高速动态切换不同形状的拓扑波导路径。
    • 不同拓扑波导路径的切换时间可达10纳秒,比现有的机械调节方法快2×10^7倍。
  4. 应用示例

    • 多通道数模转换器:通过动态编码不同的拓扑波导路径,实现高速切换输出端口,将输入的模拟信号波直接离散化为不同端口的数字信号。
    • 实验结果显示,程序化拓扑波导的切换时间可达10纳秒,大大提高了调节速度。
  5. 优势

    • 高精度控制:每个单元独立的电子控制编码功能,提供了前所未有的控制精度和速度。
    • 低串扰:由于每个时间周期只开启一个信号通道,不同通道之间的干扰可以忽略不计。
    • 灵活性:可以实现任意定制的电磁拓扑路径和高速控制功能。

这种可重构的等离激元拓扑绝缘体为未来的高保真数字通信提供了重要基础,展示了信息超表面在拓扑光子学领域的潜力。

2.3 时空编码数字超表面

时空编码数字超表面可以同时从空间和频率两个维度来调控电磁波前。其散射场可以表示为:

F[k](θ, φ) = ∑[M,m=1] ∑[N,n=1] E[mn](θ, φ)a[mn][k] 
             × exp{j(2π/λc)[(m-1)dₓcosφ + (n-1)dysinφ]sinθ}

其中:

  • F[k](θ, φ) 是第 k 次谐波的远场散射模式

  • E[mn](θ, φ) 是第 (m,n) 个元件的散射模式

  • a[mn][k] 是等效复振幅,由时空编码序列决定:

    a[mn][k] = ∑[L,l=1] (Γ[mn][l] / L) sinc(kπ/L) exp(-jk(2l-1)π/L)
    

2.3.1 应用:空间和频分复用无线通信

在这里插入图片描述
基于数字可编程元表面在无线通信中无需使用复杂的射频(RF)链(如混频器、天线和滤波器)即可传输数字消息的特点,进一步利用空时编码元表面提出了一种新的空分频复用无线通信方案。使用时空编码数字元表面产生的不同谐波频率,将不同的数字数据流同时传输给不同位置的多个指定用户,从而实现了空分和频分复用无线通信。更重要的是,即使使用足够灵敏的接收器接收所有传输的信息,也很难恢复未指定用户的comect信息。这一特性保证了使用简易平台进行无线通信的安全性。制作了一个基于空时编码元表面的双通道无线通信系统,以验证空频分复用方案的可行性,如图5(b)所示。无线通信系统的发射机由控制平台、微波信号发生器和由天线馈电的时空编码元表面组成;接收机由0=-34°和0=34”的两个喇叭天线(作为两个用户)、下变频器、软件定义无线电(SDR)接收机和后处理计算机组成。两张传输的彩色图片首先通过开-关键控(00K)调制方案转换成两种不同的比特流,然后映射到相应的时空编码矩阵。当传输的数据被具有相应时空编码矩阵的时空编码元表面调制时,传输的数据通过不同的谐波频率(fe士fo)同时向两个方向(0=-34°和0=34°)反射。调制后的波可以被两个喇叭天线独立接收,通过SDR接收器可以精确地恢复两个发射的图像。然而,如果两个喇叭天线(用户1和用户2)位于不希望的位置,即使它们可以接收到具有高发射功率的电磁波,也无法恢复传输的图像。本文提出的基于空时编码元表面的空频复用无线通信系统在未来的6G应用中具有很大的潜力。

总之基于时空编码超表面,研究人员提出了一种新的无线通信方案:空间和频分复用。这种方案的特点包括:

  1. 同时向不同位置的多个用户传输不同的数字数据流。
  2. 使用不同的谐波频率,实现空间和频率的复用。
  3. 实验验证了双通道无线通信系统的可行性。
  4. 相比传统方法,这种方案具有更高的频谱效率和空间利用率。

时空编码数字超表面为下一代无线通信系统提供了新的可能性,有望在6G通信中发挥重要作用。

3. 超表面与人工智能

超表面设计的基本问题是优化元原子结构参数,以实现所需的反射和/或透射特性。然而,直接分析的EM响应是困难的,因此人们想到能否利用人工智能加速优化设计过程。

3.1 超表面单元的智能设计

对于机器学习或深度学习来说,最重要的事情之一就是告诉计算机问题的形式,换句话说,就是让计算机理解问题。对于元原子的智能设计,优化过程的第一步是将元原子的几何形状输入到计算机中。对于元原子设计,直接输入元原子的CAD模型是非常不可取的,因为CAD模型处理起来不直观,并且有大量冗余的结构信息。推荐的方法是对元原子的结构进行参数化,并使结构参数成为优化变量。同样,以目标函数或误差函数的形式定义优化过程的目标也同样重要。给出单元结构时预测目标函数值的过程称为正向过程。相应地,给出设计目标时自动生成元原子结构的过程称为逆过程。

元原子设计最常见的优化目标是期望的s参数或特定频率范围内的复杂反射和透射系数。优化目标可以很容易地用以向量组成的离散采样点来表示。在传统的设计过程中,元原子的宽带s参数或复杂的反射/透射系数是通过在CSTMicrowave Studio等商用仿真软件上运行全波仿真来获得的,仿真过程在优化过程中占据了绝大部分时间。因此,通过深度学习方法加速仿真过程是一个值得尝试的方法。这些深度学习方法使用各种人工神经网络来学习元原子的结构参数与其离散电磁响应之间的关系。这些人工神经网络被称为预测神经网络(PNN)。PNN的学习过程是一个黑盒拟合过程;因此,PNN的网络结构具有高度的自由度,具有多种卷积神经网络(CNN)或递归神经网络(RNN)。从经验上讲,训练数据集的质量和数量决定了预测精度的上限,PNN的网络结构决定了该上限能达到什么程度。因此,鼓励尝试不同层数/节点数、激活函数和层间连接类型的各种PNN结构,直到获得所需的预测精度。由于PNN的适当结构与具体的问题和训练数据集有关,因此本文对PNN的讨论将不太关注网络结构设计,而是将重点放在整个智能设计过程中超表面单元几何及其功能的参数化方法逆设计方法相结合。

随后介绍了几种智能设计方法:

  1. 遗传算法(GA)和粒子群优化(PSO)

采用经典的机器学习方法,从数字编码元曲面的智能设计入手。Zhang等将二元粒子群优化(binary particle swarm optimization,BPSO)与商用EM软件相结合,自动寻找反射波中具有恒定相位差的配对或四元原子,如图所示。这种完全可管理的方法的主要问题是元原子几何形状的表示方式。受数字编码思想的启发,由四重对称16 x16方形子块组成的元原子由16x16二进制矩阵表示,其中1或0分别表示有或没有金属覆盖的相应子块。这种编码表示使得BPSO的使用成为可能。基于商用软件CST Microwave Studio的API,在MATLAB中执行的BPSO方法可以获得当前元原子的宽带反射相位。然后可以计算出粒子的适应度值和速度来指示元原子的更新。最终在9.5 GHz到10.3GHz频段内得到一对反射相位差为170°和190°的元原子,如图(b)所示。利用由这些对元原子组成的数字编码超表面实现波束成形应用,实验验证了这一优化结果的可靠性。Zhang等人还表明,该方法可扩展用于自动设计16对相位差为22.5°的偶元原子,以实现圆形或椭圆形辐射束。
在这里插入图片描述
这些机器学习方法(BPSO、AGA和DDQN)可以归类为启发式算法,它们具有简单和有效的优点。由于时间和计算资源的大量消耗,它们的
缺点是显而易见的。尽管如此,仍然值得尝试将它们应用于超表面优化,因为它们的使用障碍很低,而且它们的自动运行过程不需要人类
的监督。

  1. 深度学习方法
    上述机器学习方法的效率受到在商业EM软件中执行的耗时的仿真过程的阻碍,特别是当问题的规模很大时。幸运的是,作为这些方法的副产品,产生了大量的数据集,可以作为训练深度学习方法的数据集。Zhang等人的进一步工作训练了基于深度学习的卷积神经网络CNN来预测编码超表面被横电(TE)和横磁™极化波辐射时,在特定频率下的双重各向异性元原子的反射相位。数字元原子的0,1表示为元结构提供了一种自然的参数化方法,可以直接用作为cnn的输入。经过训练过程,CNN可以在几毫秒内以较高的精度预测反射相位,并在优化过程中取代商业软件的功能,如图所示,使整个BPSO速度加快。实际上,CNN的预测过程非常快,可以使用全局随机搜索方法搜索整个参数空间来寻找解。作为一个例子,Christian等人训练了一个PNN来预测由方形圆柱形谐振器阵列组成的全介电超表面的s参数,其中每个单元圆柱体由其半径和高度参数化。然后提出了一种快速字典搜索(FFDS)方法,利用PNN在数小时内找到与期望s参数相对应的合适的单元胞结构。
    ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/bb5fae84a423474690bc1ebe7a8d3d17.png在这里插入图片描述
  2. 生成对抗网络(GAN)
    在上述讨论中,元原子或元表面都是用结构参数表示的,这在一定程度上限制了设计的自由度。Sajedian等发现使用元原子结构的二维图像作为PNN的输入,可以成功地预测相应的光学性质,这意味着元原子可以用像素化模式来表示。受此技巧的启发,在图像生成中广泛使用的生成式对抗网络(GANS)被引入到具有任意二维结构的元原子的逆设计中。作为一个直观的案例,Jiang等人训练了一个生成器,该生成器接受量化的设计目标和正态分布的随机数来输出所需的元光栅图案。对鉴别器进行训练,将训练集中采样的实际模式与生成器生成的那些假模式区分开来,从而指示生成器的学习过程。经过良好的训练后,生成器可以通过输入不同的随机数来输出对应于一个设计目标的多个模式。然后可以通过全波模拟来选择这些多个输出模式以挑选出最佳结果。Liu等人开发了另一种生成器训练策略,他们将预训练好的PNN加入到生成器中,形成VAE结构,如图所示。结果,PNN使发生器输出模式的频谱符合设计目标,鉴别器使这些模式符合拓扑特征。上述作品中的生成器在输入中加入了随机噪声,以增加输出模式的多样性。此外,在GAN的训练过程中,Ma等将元原子模式及其相应的光学响应(设计目标)编码到潜在空间中,如图©所示。然后设计了一个精心设计的采样策略,将该潜在空间中的数据作为逆生成器输入的一部分进行采样,以保证设计结果的多样性。一个有趣的现象是,具有相似几何特征的元原子的提取特征在潜在空间中聚集在一起,这类似于自然语言处理中的词向量聚类。这一现象为预测和逆人工神经网络的特征提取行为学提供了一定的可解释性。
    在这里插入图片描述

综上所述,使用AI的元原子设计已经取得了很大的进展,其中采用定制的机器学习算法来实现正向设计和反向设计,并且预测结果和仿真结果之间具有很高的一致性。这些算法比人工调优表现出内在的优势,特别是在多维空间优化和多样本输出的情况下。但是,仍然存在一些不足。到目前为止,提出的算法虽然是每个领域的代表,但只能在有限的设计自由度下解决一个特定结构的正向或逆设计问题。虽然包括二进制像素模式在内的方法在一定程度上缓解了自由度的稀缺性,但当在设计中探索新的维度时仍然会遇到困难,这需要使用额外的仿真时间再次训练网络。参数选择的约束和自动设计的范围是另一个缺陷。而且离散(可选材料电介质、像素二值化)和连续(结构参数)值有时需要同时输入网络或从网络中提取。在反设计中,由于超出范围的结构参数,预测的结构可能在物理上无法实现。这种情况会损害网络性能,降低匹配成功率。此外,迭代算法可能会收敛到局部最小值,这可能归因于数据集不足,或者在优化过程中可能会错过强局部谐振点。

3.2 超表面阵列的智能设计

本章介绍了几个使用AI技术设计数字编码超表面的例子:

  1. 使用卷积神经网络(CNN)
  2. 自适应微波隐身斗篷
  3. 基于物理辅助的无监督生成对抗网络(GAN)方法

正如引言部分所讨论的那样,使用机器学习算法设计一个完整的元表面比设计一个元原子要困难得多,关于这个主题的研究非常有限。在这里,我们给出了一些使用AI技术设计数字编码元表面的例子。编码元表面由数字元原子阵列组成,通过操纵元原子的EM响应来表现出各种独特的宏观现象。以1位编码元表面为例,元原子的状态通常由迭代优化算法,如GA,粒子群优化,Gerchberg-Saxton(GS)算法得到。这些迭代优化算法可以达到设计目标,但在实时全息等特定应用中效率不够高,无法满足实时性要求。受深度学习方法的实时逆设计能力的启发,逆人工神经网络在编码元表面的设计中越来越受到关注。Shan等人通过学习1位编码元表面的辐射方向图属性与编码状态之间的关系来训练有监督的CNN。训练数据集由耦合样本组成,这些样本由单波束和双波束模式的参数以及通过执行反向传播或GA获得的相应编码序列或模式组成。受监督的CNN可以提供编码序列或模式,以毫秒的速度生成所需的波束模式。钱等人最近展示了一种新型自适应微波斗篷,由预训练ANN控制的编码元表面实现,如图(a)所示。该编码超表面应对入射波具有快速响应,并产生设计良好的反射EM以隐藏内部物体,这就要求从所需的EM响应到超表面单元的偏置电压具有实时逆设计能力。逆设计方法需要在小型化的边缘器件中执行。以上两个限制使得之前的迭代设计方法几乎成为不可能的选择。为了解决这个问题,钱等人训练了一个小型全连接ANN来学习所需的反射光谱与入射波的特征到相应的元原子偏置电压的映射。实验结果表明,由简单ANN控制的超表面斗篷是有效的,可以在毫秒内对不断变化的入射波做出反应。
在这里插入图片描述
从上面的讨论中,我们注意到设计数字编码元表面的深度学习方法都是有监督的方法,这意味着人工神经网络的训练依赖于大量的耦合样本。这样的训练样本要么来自全波模拟,要么来自实验测量,这需要大量的时间和精力,给研究人员带来了很高的障碍。为了解决这个问题,Liu最近开发了一种物理辅助无监督GAN方法,在给定目标全息图像时实时设计1位编码元表面的相应全息图,如图(b)所示。利用EM传播公式构造超表面全息图到对应全息图像的正演映射,可以在无监督VAE结构中训练负责逆设计的生成器。该VAE的训练目标的选择是使输出图像尽可能与输入图像相似,从而可以使用任意图像来训练生成器而无需准备它们对应的全息图。在训练过程中加入一个判别器,使输出的VAE图像在拓扑结构上与输入图像更加相似。实验结果表明,经过训练的生成器设计的超表面全息图比传统GS算法设计的全息图具有更好的成像质量。可以预见,未来将会有更多的物理辅助深度学习方法被开发出来,用于整个超表面的智能设计。

4. 智能超表面

4.1 集成机器学习算法的信息超表面

介绍了一种集成主成分分析(PCA)算法的实时数字超表面成像仪。

在上一节中,利用机器学习和深度学习实现元表面的智能化设计算法,包括元原子和元原子阵列的设计。然而,AI可能与信息元表面有更紧密的联系,使其更智能,从而产生智能元表面。在这里,首先研究与机器学习算法集成的信息元表面及其在微波成像中的应用。微波图像已经广泛部署在各种场景中,但有限的成像速率、复杂的重建算法和高成本的硬件仍然是性能提升和商业应用的瓶颈。此外,庞大的数据流使得微波成像仪在复杂的原位传感和监测中无效。

为了解决这些问题,Li等人设计了一种实时数字超表面成像仪,利用PCA来指导优化的测量模式正如最近机器学习的高级研究所证明的那样,图像数据可以被高度压缩和侦察。在特征提取的策略下,虚拟地、完美地结构化。在每一个在图像采集轮中,有限数量的特征模式将足以用于整个图像重建和分析,从而减轻了测量和数据传输的负担。

如图所示,原始原始的图像(向量x)被线性转移(压缩)到低维数据y中。并通过PCA算法进行重构,保证了原始数据之间经过变换后的信息丢失最小,从而从采集的数据中获得了可靠的重构性能。为了在EM域中实现基于机器学习的测量模式,设计并制造了一个2位数字编码元表面来动态操纵入射波,如图(b)所示。在每个元原子中,四个PIN二极管被单独控制,从而使元原子在中心频率处显示与入射波的相位响应相关的四个数字状态即状态0(0°)、状态1(90°)、状态2(180°)和状态3(270°)。通过之间的适当映射在源场和近场中,为每种测量模式确定编码模式,并以64hz的最大时钟速率周期性地加载到元表面,从而构建实时元表面成像仪如图©所示。图(d)和(e)展示了所提出的成像仪的成像能力。从图(e)所示的重建结果来看,即使受试者被纸墙阻挡,也可以清楚地识别受试者的身体手势。将一把模拟危险目标的红色塑料剪刀绑在被试身上,通过成像仪成功检测到。

需要注意的是,每张图像都是在400种测量点下采集的,这比8000个像素数要小得多,相当于压缩率达到95%。为了验证成像仪的识别能力,还进行了实验。选择了三类动作进行分类,即站立、弯腰和举臂。在实验中,根据具体的图像集设计了60种测量模式,图(f)描绘了准确率与测量次数的关系。从曲线上可以看出,PCA的分类性能比随机投影要好得多,可以在不使用更多测量的情况下快速接近理想结果。值得指出的是,将压缩后的数据作为分类任务的原始数据,在收集到前25个主成分时,分类精度已经达到了它的上限。总结,在CNN算法的帮助下,电控超表面成像仪有望扩展场地,实现快速数据采集和处理,达到智能监控。
在这里插入图片描述

4.2 集成多个卷积神经网络的信息超表面

介绍了一种智能微波超表面成像仪和识别器,即"微波相机"。

近年来,使用cnn在计算机视觉任务(如物体检测和图像处理)上取得了令人瞩目的进展。CNN的巨大成功依赖于它使用所谓的核(kernel)来探索空间关系的能力,核将提取完整的图像来生成特征信息。它使CNN能够开发具有参数共享的高维图像的内部表示。因此,与全连接神经网络相比,CNN架构显著减少了需要训练的参数数量,有助于更快的收敛速度和更紧凑的模型。Li等人提出了一种智能微波元表面成像仪和识别器称为微波相机,它由一系列人工神经网络赋予能力,用于自适应控制数据流并自动识别目标。实验已经证明了该元表面具有成像、手势识别和呼吸监测的多功能。
在这里插入图片描述
图(b)展示了集成了深度学习技术的智能元表面的整体结构。反射式数字元表面,其动态频率响应如图©所示,可操纵源信号并充当智能传感探头。

智能超表面有两种工作模式:主动和被动。与传统的建模和分析EM环境特征的方法相比,基于ann的方法在计算成本方面效率更高,对背景或环境不敏感,并且可针对各种场景进行训练,因此更容易部署。基于智能元表面,用不同的CNN模块完成手势识别和呼吸监测两项具体任务。

采集到的微波数据首先经过IM-CNN-1成像网络,由IM-CNN-1成像网络将原始数据转化为实时人体图像,如图(d)右图两段所示。然后,执行更快的R-CNN从整个图像中找到感兴趣的区域(ROI),如图中两个插图中的红色矩形所示。然后,执行一种自适应的GS算法来计算优化的超表面数字编码模式,以实现波束聚焦在目标区域,例如用于手语识别的手或用于呼吸监测的胸部。最后,将收集到的微波数据传输到特定的网络中,以便在每种功能模式下进行分析。具体来说,人类呼吸由时频域分析仪识别,另一个CNN网络IM-CNN-2处理数据以识别手部设计。

从绘制的结果来看,受试者的呼吸频率约为0.28HZ。异常状态也被清晰地区分出来。当受试者被要求屏住呼吸时。在这10个类别下,手势识别的准确率达到96%,其中6个类别在插图中有说明。人的手的手语速率和呼吸速率都在10-30bit/s量级,明显比数字编码模式的切换速度慢105倍。因此,集成多个卷积神经网络的智能超表面在未来有潜力完成更复杂的任务,例如人类动作与情绪识别等。

4.3 集成传感器和现场算法的信息超表面

正如上面所讨论的,大多数可编程的超表面主要集中在EM波的操纵上,其中必须有人类参与才能做出指令。为了进一步获得更智能的元表面功能来自己做出决策,元表面应该具有收集基本信息并做出决策的传感能力。在这里,回顾了两个具有智能感知功能的智能元表面。图(a)和图(b)示意图展示了Ma等人提出的具有自适应可编程功能的元表面其中集成了多个传感器、一个微控制器单元(MCU)和FPGA构建了一个闭环传感反馈系统,用于自动决策。在这种情况下,作者假设卫星的位置是相对固定的,因为它们之间的距离非常远。当飞行器的空间姿态发生变化时,陀螺仪传感器将姿态数据发送给MCU,由MCU驱动超表面引导EM波束指向卫星当其他特定特征和超表面周围的环境发生变化时,比如光强、湿度和温度。
在这里插入图片描述

集成的传感器可以将及时检测到变化并将相应的信息发送到MCU。随后,MCU通过反馈算法自动处理所有传感信息和输出指令,驱动FPGA时自适应更新数字编码序列或模式,使元表面无需人工指令即可完成不同的功能。图(a)和图(b)从概念上展示了一个卫星通信场景的例子,飞机配备了智能元表面,其中有一个陀螺仪传感器集成。嵌入式陀螺仪传感器可以即时获取超表面的不同空间方向(Δ0,AФ),并在飞行的飞机改变其在天空中的空间位置时发送相应的信息。原来的波束偏转方向(0,Ф)变成了改变后的方向(0+A0,Ф+AФ)。然后将具有波束偏转的数字编码方向图的变为需要的数字编码方向图,保证辐射波束始终指向卫星。

5. 可编程人工智能机器

5.1 基于3D打印超材料的神经网络硬件

在上面的章节中,AI除了作为软件与信息元表面协作还可以进行硬件协作。最近,为了探索AI计算硬件的新架构,各种光神经网络硬件被报道出来,产生更快的计算速度和更低的能耗。2018年,Lin等人提出了一种用于机器学习的全光学衍射神经网络,如图(a)和(b)所示。多层神经网络是基于使用3D打印技术制造的五层光学超材料建立的。当相干光穿过输入层并照射学习层时,遵循惠更斯-菲涅耳原理的层间像素块的衍射行为具有类似于全连接神经网络的网络模型。

所提出的网络中光的前向传播本质上类似于全连接神经网络的前向传播计算。更重要的是,光速的前向传播由于其被动结构,可以实现超快的网络计算能力和超低的功耗。与传统电子芯片相比,其计算功耗和能效优势显著。这样一个可学习的网络在计算机中通过调整像素的传输系数,使用误差反向传播方法进行理论训练。输入和输出光场如图©和(d)所示,其中探测器区域用红色虚线标记。为了证明d2nn的性能,作者基于MNIST数据集训练了该设备进行图像识别,其中55,000张图像用于训练,10,000张用于测试的分类准确率,准确率达到了91.75%。
在这里插入图片描述

5.2 可编程人工智能机器

虽然全光学衍射神经网络已经在三维和平面结构中得到了证明,并具有优异的性能,但它们一旦被制造出来就具有固定的功能,其中训练过程仍然在传统的计算机上进行。也就是说,这些衍射神经网络是不可编程的。2021年,Zhou等人进一步提出了一种可重构的光学衍射处理单元(DPU)他们采用了一系列光学器件,如数字微镜器件(dmd)、空间光调制器(SLMS)和互补金属氧化物半导体(CMOS)传感器,形成了一个单层可编程光网络,如图所示介绍了一种完全可编程的人工智能机器(PAIM),它使用多层信息超表面构建,图(h)和图(i)。

利用数字光学微镜的大规模光反射开关阵列的可编程性,可以对光源进行精确控制。然后,借助模拟RNN结构的电子电路,将这种单层可编程光网络的输出馈送到其输入端口,从而模拟出一个多层光学神经网络。使用MNIST数据集对多层光神经网络进行了训练和测试,并实现了97.6%的盲测准确率。该方案为实现大规模衍射神经网络的可编程性开辟了一条新途径。

然而,上述工作是基于单层可编程光网络,多层光神经网络必须借助电子芯片来执行,并且训练过程是在计算机中进行的这削弱了D’NNS中光速计算的优势。为了彻底解决这个问题,Liu等人提出了一种使用多层信息元表面的完全可编程AI机器(PAIM),它可以直接接收自由空间中的电磁波,并通过调整元原子的传输增益来实现波空间中的直接计算,具有很宽的动态控制范围。而且,在完全可编程的衍射架构中保持了光速计算的特性,极大地拓展了其应用潜力。为了进行实验演示,设计并制造了具有5个可编程层的原型,具有可编程图像识别、自动光束聚焦和无线通信等多种功能,如图所示。
在这里插入图片描述
多层信息抽象处理机制使得PAIM不仅是一个神经网络模拟器而且是可以对微波信号的直接处理装置。由于其快速的现场可编程性,PAIM展示了许多功能,包括图像识别,基于强化学习的波束聚焦,以及带有去噪功能的波空间通信编解码器。图c)和(d)所示的例子展示了风景和肖像之间的图像识别。首先对输入图像进行像素化和灰度化处理,形成一个蒙版。然后利用入射EM波的辐射形成输入场,构造
EM传播过程中的比能量分布。最后通过输出层来判定结果。

除了智能图像识别之外,提出的PAIM还可以实现基于码分多址(CDMA)方案的信息传输,如图(a)所示。在该方案中,设计了四个用户代码,并由第一可编程层输入,该层被视为编码器。其他四层作为解码器,将用户码的能量引导到相应的方向,由接收平面上的四个喇叭天线感测。通过训练解码网络的权值分布,来识别每个用户码是否被发送。需要注意的是,解码的目标是区分四个相近的能量输入,这可能会造成严重的码间干扰。因此,基于这种解码器,在非常小的空间内以低干扰的方式传输多个用户码。基于CDMA方案,进一步建立无线通信原型,如图(b)所示。在接收平面上放置一个集成了模数转换(ADC)和FPGA的接收天线阵列,用于检测每个用户码对应的接收天线位置的电场能量值。调幅用于通信信号调制。具体来说,在一定的时钟间隔内,当某一用户码对应的接收天线位置检测到高电平时,该用户在当前时钟间隔内发送的二进制信息为“1”,否则为“o”。由于在PAIM中可以独立发送4个用户码,因此我们可以在同一信道内同时发送4个信号。如果不同的用户码传输同一幅图片的不同部分,那么传输速率就会提高4倍。对东南大学毫米波国家重点实验室100x100二进制像素的微章图像进行了传输和测试,实现了0.52%的传输误差率。作为对比,还通过去除PAIM的解码部分进行了图像传输实验其中49.02%的像素未被成功接收,说明去除PAIM后,用户码间干扰变得非常明显。
在这里插入图片描述

提出的PAIM实现了首个微波空间可编程处理、人工智能的光速计算、无线传感和通信系统,经过进一步小型化和集约化,在智能雷达和新一代通信系统中具有广泛的应用前景。例如,部署在雷达系统中的PAIM可以直接在微波域中完成目标识别任务,并与数字处理单元一起替代传统的Tx/Rx模块。由于电磁波传播的瞬时速度,以光速进行高维矩阵乘法运算,构建了一个延迟可忽略不计的实时处理系统。基于所提出的可编程平台,还设想神经网络的训练过程可以直接在我们的PAIM架构上实现。传统的反向传播算法迭代地优化神经网络内部的可训练参数,在设计过程中通常需要耗费大量的计算资源和时间。

6. 结论

信息超表面和智能超表面的研究已经取得了显著进展,展现出巨大的潜力和广阔的应用前景。未来的研究方向可能包括:

  1. 重构Shannon信息理论:通过深度结合数字信息和电磁场,探索新的信息理论模型。

  2. 新型调制形式:为下一代通信系统探索可以结合时域、频域、空域和极化域多重调制的新形式。

  3. 提高工作频率:将信息超表面的工作频率从微波扩展到太赫兹甚至光学频段。这需要开发新的光学器件来实现高频段的可编程设计。

  4. 改进智能设计方法

    • 对于元器件设计,需要更通用和精确的智能设计方法。深入分析和解构特定结构的电磁特性可能是提高未来算法性能的关键。
    • 对于超表面阵列设计,需要更精确和智能的设计方法。
  5. 增强可编程人工智能机器

    • 开发更强大的非线性可编程形式,为深度神经网络硬件研究注入新活力。
    • 提高智能超表面作为神经网络的计算规模和可编程能力。
  6. 探索新应用

    • 在智能雷达和新一代通信系统等领域进一步探索应用。
    • 研究如何将训练过程直接实现在PAIM架构上,以充分利用其光速计算能力。
  7. 解决技术挑战

    • 解决高频段可编程设计的技术难题。
    • 提高PAIM的微型化和集成度。
    • 探索在PAIM中提取中间层电场的可行方法,这对于反向传播算法至关重要。

总的来说,信息超表面和智能超表面的研究正处于一个充满机遇和挑战的阶段。通过跨学科合作和持续创新,这一领域有望在未来几年内取得更多突破性进展,为通信、感知、计算等多个领域带来革命性的变革。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪仔蛋黄酥

如果对您有所帮助的话欢迎打赏!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值