co-training和tri-training

Tri-training

半监督学习

之前提到的算法,多数都属于监督学习算法。其特点在于,构建一个包含标记数据的训练集,用来训练算法模型。

然而,获得标记数据是一个费时费力的高成本过程,实际工作中,更有可能的情况是:少量标记数据+大量未标记数据。

未标记数据的处理方式,一般有如下三种:

这里写图片描述

主动学习

1.根据标记数据生成一个简单的模型A。

2.挑出对改善模型性能帮助最大的样本数据B。

3.通过查询行业专家获得B的真实标记。

4.根据B的真实标记,更新模型A。

以SVM为例,对于改善模型性能帮助最大的样本往往是位于分类边界的样本,可将这些样本挑出来,查询它的标记。

纯半监督学习和推断学习

纯半监督学习和推断学习,都属于广义上的半监督学习。和主动学习不同,半监督学习无需专家提供的外部信息。

但标记数据总归不能无中生有,半监督学习的实现有赖于若干假设,其中主要有聚类假设和流形假设两种。其本质都是“相似的样本拥有相似的输出”。

纯半监督学习假定未标记数据为训练样本集,而推断学习则认为未标记数据为测试样本集。

虽然多数情况下,半监督学习能有效提升模型的泛化性能,然而这并不是绝对的。当半监督学习之后,模型的泛化性能反而下降时,我们首先需要检查数据是否满足算法所依赖的假

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值