CoKE: Contextualized Knowledge Graph Embedding

COKE简介

先前的知识图谱嵌入方法允许对每个实体或关系进行单个静态嵌入,忽略了他们的内在上下文属性。CoKE是一个新奇的模型:它考虑到上下文属性,学习动态的,灵活的和充满上下文的实体和关系embedding。有两种类型的图内容被考虑到:边和路径,这两者都被形式化为实体和关系的序列。COKE利用transformer块来对输入进行编码并获得实体和关系的上下文表达。

COKE的整体概图
在这里插入图片描述
任务:链接预测和路径问题回答
模型输入:元素embedding和位置embedding
在这里插入图片描述
在这里插入图片描述
当构建了所有的输入表达之后,将他们再输入到一堆连续的transformer编码器中来编码序列。在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值