【深度学习_1.3】搭建浅层神经网络模型

本文介绍了如何搭建一层隐藏层的浅层神经网络,包括数据加载、模型构建、正向传播、损失计算、反向传播、参数更新和预测等步骤,并通过Python实现。通过实例展示了在2维数据集上构建和训练模型,最终绘制了决策边界。
摘要由CSDN通过智能技术生成

目的:搭建一层隐藏层的浅层神经网络

【准备】

1.导入相关包

import xxxx

2.加载数据集

X, Y = load_planar_dataset()

3.查看数据

plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

[image]

4.查看数据集dim

shape_X = X.shape
shape_Y = Y.shape
m = X.shape[1]  # training set size

【构建算法模型】

1.定义基本模型

def layer_sizes(X, Y):

    n_x = X.shape[0] # 定义输入层size
    n_h = 4 #定义隐藏层size
    n_y = Y.shape[0] # 定义输出层size

2.初始化参数

def initialize_parameters(n_x, n_h, n_y):

    W1 = np.random.randn(n_h, n_x)*0.01
    b1 =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值