基于IEEE33的主动配电网优化,采用IEEE33节点配电网进行仿真,搭建了含风光,储能,柴油发电机和燃气轮机的配电网经济调度模型

文章详细描述了一个基于IEEE33节点的分布式电源优化调度模型,利用粒子群算法考虑多种能源、价格因素和状态约束,以最小化运行成本。模型涵盖了光伏、风电、燃气轮机、柴油发电机和储能,展示了优化过程和结果分析。
摘要由CSDN通过智能技术生成

基于IEEE33的主动配电网优化,采用IEEE33节点配电网进行仿真,搭建了含风光,储能,柴油发电机和燃气轮机的配电网经济调度模型,以总的运行成本最小为目标,考虑了储能以及潮流等约束,采用粒子群算法对模型进行求解,得到了各个分布式电源的运行计划。
这段程序是一个基于IEEE33节点电网的分布式电源优化调度模型。下面我将对程序进行详细的分析和解释。

首先,程序使用了一些全局变量,包括光伏发电量(PV)、风力发电量(WT)、负荷(Pload)以及各种电源的价格(PV_price、BT_price、WT_price、DG_price)和电网的分时电价(grid_price)。

然后,程序对一些参数进行了初始化,包括微型燃气轮机的最大功率(MTMaxPower)和最小功率(MTMinPower)、柴油发电机的最大功率(GridMaxImportPower)和最小功率(GridMinImportPower)、储能的最大放电功率(StorageMaxDischargingPower)和最大充电功率(StorageMaxChargingPower)等。

接下来,程序使用一个双重循环来初始化种群个体的位置和速度。其中,位置(x)表示各个电源的功率输出,速度(v)表示各个电源的功率变化速度。根据节点的不同,电源的功率范围也有所不同,程序对各个电源的功率进行了限制。

然后,程序计算了优化前的成本(C_before),并进入主循环。主循环中,程序根据粒子群算法的原理,更新粒子的速度和位置,并计算各个粒子的适应度。适应度函数(fitness)的计算包括对各个电源的成本进行累加,并考虑储能的状态约束。程序还计算了储能的SOC(State of Charge)约束,如果SOC超出范围,则增加一个惩罚项。最后,程序返回优化后的成本(C_all)作为适应度函数的结果。

在主循环中,程序还记录了每次迭代的最优适应度值,并绘制了适应度函数的迭代收敛图。此外,程序还绘制了燃气轮机、柴油发电机和储能的运行计划,以及光伏和风力发电的出力曲线。

最后,程序输出了优化前和优化后的成本,以及优化后的全局最优位置(Solution)。

总的来说,这段程序实现了一个基于粒子群算法的分布式电源优化调度模型,通过优化各个电源的功率输出,以降低电网的运行成本。程序考虑了光伏、风力发电、燃气轮机、柴油发电机和储能等多种电源,并考虑了电网的分时电价和负荷的变化情况。通过迭代优化,程序找到了最优的电源功率分配方案,以降低电网的运行成本。

YID:1350659687081783

ocean



本文将详细分析和解释一个基于IEEE33节点电网的分布式电源优化调度模型。该模型采用了IEEE33节点配电网进行仿真,并搭建了一个包括风光、储能、柴油发电机和燃气轮机的配电网经济调度模型。该模型的目标是以最小总运行成本为目标,在考虑储能和潮流等约束的情况下,使用粒子群算法对模型进行求解,得到各个分布式电源的运行计划。

首先,该模型使用了一些全局变量。这些全局变量包括光伏发电量(PV)、风力发电量(WT)、负荷(Pload)以及各种电源的价格(PV_price、BT_price、WT_price、DG_price)和电网的分时电价(grid_price)。这些全局变量用来表示模型中各个元素的状态和属性,为后续的计算和优化提供了必要的数据。

然后,模型对一些参数进行了初始化。这些参数包括微型燃气轮机的最大功率(MTMaxPower)和最小功率(MTMinPower)、柴油发电机的最大功率(GridMaxImportPower)和最小功率(GridMinImportPower)、储能的最大放电功率(StorageMaxDischargingPower)和最大充电功率(StorageMaxChargingPower)等。这些参数的初始化为后续的计算和优化提供了基础。

接下来,模型使用一个双重循环来初始化种群个体的位置和速度。其中,位置(x)表示各个电源的功率输出,速度(v)表示各个电源的功率变化速度。根据节点的不同,电源的功率范围也有所不同,因此模型对各个电源的功率进行了限制。这个循环的目的是为每个个体设置初始的位置和速度,为后续的优化算法提供初始条件。

然后,模型计算了优化前的成本(C_before),并进入主循环。主循环中,模型根据粒子群算法的原理,更新粒子的速度和位置,并计算各个粒子的适应度。适应度函数(fitness)的计算包括对各个电源的成本进行累加,并考虑储能的状态约束。模型还计算了储能的SOC(State of Charge)约束,如果SOC超出范围,则增加一个惩罚项。最后,模型返回优化后的成本(C_all)作为适应度函数的结果。

在主循环中,模型还记录了每次迭代的最优适应度值,并绘制了适应度函数的迭代收敛图。此外,模型还绘制了燃气轮机、柴油发电机和储能的运行计划,以及光伏和风力发电的出力曲线。这些图表和数据的输出有助于分析和评估模型的性能。

最后,模型输出了优化前和优化后的成本,以及优化后的全局最优位置(Solution)。这些结果可以用来评估模型的优化效果和应用性能。

综上所述,该模型实现了一个基于粒子群算法的分布式电源优化调度模型。通过优化各个电源的功率输出,以降低电网的运行成本。模型考虑了光伏、风力发电、燃气轮机、柴油发电机和储能等多种电源,并考虑了电网的分时电价和负荷的变化情况。通过迭代优化,模型找到了最优的电源功率分配方案,以降低电网的运行成本。该模型的应用有助于提高电网的经济性和可靠性,为分布式电源的大规模应用提供了一种有效的调度方法。

以上相关代码,程序地址:http://coupd.cn/659687081783.html

  • 9
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值