活体识别-benchmark

Existing datasets

 

Model Metrics

       --                  predy_0                  predy_1
     gt_0                      TN                      FP
     gt_1                      FN                      TP
  • Attack Presentation Classification Error Rate[APCER] :  FP / (TN + FP)
  • Bona Fide Presentation Classification Error Rate[BPCER] : FN / (TP + FN)
  • Average Classification Error Rate[ACER] : (APCER + BPCER) / 2.0
  • False Rejection Rate[FRR] : FN / (TN + FN)
  • False Acceptance Rate[FAR] : FP / (TP + FP)
  • Half Total Error Rate [HTER] : (FAR + FNR) / 2.0

CAISA-MFSD[2012]

SiW[2018]

  • dataset-download-link[passdoor]【磁盘空间约210G!!!】.
  • paper : Learning Deep Models for Face Anti-Spoofing: Binary or Auxiliary Supervision[CVPR-2018].
  • num_subj = 165【8-live + 20-spoof for each subjec】,total 165 * 28 = 4620 videos.
  • name-style : SubjectID_SensorID_TypeID_MediumID_SessionID

       

  • dataset-glimpse

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ReLuJie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值