github链接(matlab code):https://github.com/Meidya/Spectral-Matting
论文信息:Anat Levin,Alex Rav-Acha,and Dani Lischinski. "spectral matting", 2007 CVPR,2008 TPAMI.
Motivation:
从matting laplacian矩阵的最小特征向量所构成的特征子空间来构建理想的matting components,然后通过优化一个关于matting components的代价函数来得到最终的alpha-matte.
Novelty:
1.从spectral segmentation角度来看,文章提出了一种抽取soft matting components的方法,后者可以用于构建图片的alpha-matte.
2.从传统matting的角度来看,本文提出的spectral matting可以实现无监督学习alpha-matte,即不需要user提供trimap或者scribble.
Technical details
1.matting laplacian矩阵
matting laplacian矩阵是由作者在2006年CVPR文章 A Closed Form Solution to Natural Image Matting中提出的,关于Closed-form matting(以下简称CF-matting)的一些技术细节,可以参考【1】。这里先简单回顾一下matting laplacian矩阵的假设前提、表达形式。首先来看compositing equation:
(1)
其中I表示图片中的pixel,F和B依次表示前景成份和背景成份,表示透明度,其取值区间为[0,1],取0表示该pixel为背景像素;取1表示该pixel为前景像素;否则为混合像素。
【未完待续...】