在AI视频生成领域,阿里云开源的Wan2.1-VACE-14B模型凭借其突破性技术架构与多模态能力,正掀起一场创作革命。本文将从核心优势、硬件配置到 四大核心功能(动作迁移、视频扩展、视频局部编辑、多图融合) 进行深度解析,助你全面掌握这一前沿工具。
VACE github项目地址:GitHub - ali-vilab/VACE: Official implementations for paper: VACE: All-in-One Video Creation and Editing
https://github.com/ali-vilab/VACE
1 核心优势:技术架构与性能标杆
-
SOTA生成质量:在权威评测集Vbench中,Wan2.1-VACE-14B以86.22%总分超越Sora、Luma等国内外模型,尤其在复杂运动生成和物理建模上表现卓越。其采用自研的因果3D VAE架构与视频Diffusion Transformer,通过时空压缩与长时程依赖建模,实现无限时长1080P视频编解码,压缩效率提升40%。
-
多模态全能覆盖:支持五大核心功能: 文本/图像到视频(T2V/I2V) 、视频编辑、 图像生成(T2I) 及 视频到音频(V2A) ,覆盖创作全流程。尤其突出的是动态中英文字幕生成,显著提升信息传达效率。
-
硬件兼容性与效率:专业版14B模型需16GB以上显存(如RTX 4090),而极速版1.3B仅需8.2GB显存,可在消费级GPU上4分钟生成5秒480P视频。硬件推荐(需支持 CUDA 11.8+):
14B专业版:RTX 4090(24GB显存)+ 32GB内存 + 100GB SSD
1.3B极速版:RTX 3060 Ti(8GB显存)即可运行
本地显卡配置不足的,可以在onethingai网心云平台使用,新人首次注册送5元代金券,完成学生认证可领20元大额代金券无门槛使用(OneThingAI算力云 - 热门GPU算力平台)。本次实战用到的镜像和GPU参数如下:
2 实战功能解析
2.1 动作迁移:跨主体动态复刻
技术原理:基于跨注意力机制与3D因果VAE,模型通过捕捉源动作的时空特征,结合目标主体的外观一致性约束(如RefAdapter模块),实现自然迁移。
操作案例:将舞蹈动作从专业演员迁移至普通用户,保持肢体协调与角色特征。
上传动作参考视频与目标图像,调整frame_num(帧数)与sample_guide_scale(动作强度),生成动态一致的新视频。手部细节、面部表情、姿势动态保持的都非常好。
2.2 视频扩展:无限时长与高清增强
算法创新:结合Flow Matching框架与自研VAE,支持从静态图像生成720P高清视频,并通过时间插值实现视频时长扩展。实验显示,14B模型在RTX 4090上生成18秒720P视频仅需19分钟。
操作案例:将电影画面进行扩展,可以保持较高的一致性,并且富有质感
相较于传统插帧算法(如SuperSloMo),Wan2.1的PSNR提升1.34dB,显著减少画面撕裂。
2.3 视频局部编辑:精准可控的修改操作流程
通过遮罩工具划定编辑区域,调整参数--sample_shift(噪声调度)与guide_scale(提示词权重),生成局部修改后的连贯视频。
案例展示:在沙滩边走路的视频中,仅修改人物,背景动态保持自然过
2.4 多图融合:风格与信息的协同创作
输入形式:支持多图输入(如人物图+商品图),通过T5编码器解析语义,在潜空间进行特征融合。像素级融合:采用 离散小波变换(DWT) 与自适应权重分配,保留多图关键细节.
案例展示:图中的男人拿着图中的包包
画面略微不协调,但人物和物品一致性保持的很好。可以进一步修改重绘、动态参数进一步调整。欢迎大家在评论区反馈生图效果~
模型下载地址:Kijai/WanVideo_comfy at main
!VACE需搭配万相T2V模型使用,例如:VACE-14B必须搭配T2V-14B模型使用!
节点下载地址(请更新到最新版5.12):GitHub - kijai/ComfyUI-WanVideoWrapper