注意:不要单纯调参,重要的是数学建模依据和内在经济含义。
目录
目标:Alphas with decent Sharpe (>2.5) and reasonable turnover (< 40%)
提高Sharpe Ratio
information ratio (IR).
IR = Return / standard_deviation (Return)
1. 增加return(重点)
2. 降低波动性
可尝试使用 neutralization(使用公式和在setting里面调参效果是一样的)
使用trade_when,winsorize
提高Return
AnnualReturn = AnnualizedPnL / (0.5*Booksize)
BookSize is assumed as $20 Mn on BRAIN
1. 提升turnover,使用lower decay
2. 使用流动性高的universe(smaller)
3. 在保持收益与回撤水平不变的前提下,提高阿尔法策略的波动性或可获取更高收益
4. 尝试使用new和analyst数据集
调整Turnover
降低Turnover
Daily Turnover = Dollar trading volume/Booksize
1. 适当增加decay
2. 使用rank
3. 使用trade_when
4. 使用hump来设置阈值thresholds
5. 和turnover低的alpha结合
提升Turnover (vice versa)
1. 降低decay值
2. 使用流动性高(smaller)的股票池universe(比如,top3000->top1000,想让turnover变小就反向操作)
top3000是流动性较高的top1000和剩下的流动性较差的2000只股票组成的,所以相对来说top3000流动性较低
3. 在time series和cross sectional运算中,使用更短的时间段(比如,使用20天来代替200天作为参数,想让turnover变小就反向操作)
4. 利用高价值评分的数据集,使用会频繁更新的数据集类别(例如新闻、市场情绪数据)
提高Fitness
Fitness = Sharpe * sqrt(abs(Returns)/max(Turnover,0.125))
依照公式调整变量即可
1. 增加return
2. 降低turnover
降低Weight concentration
1. 添加归一化函数(比如,rank)
2. 降低truncation
3. 使用ts_backfill(也适用于处理覆盖率低的数据)