寻找市场中的Alpha-WorldQuant功能的实现(下)

本文详细介绍了如何在BigQuant平台上复现WorldQuant的因子分析功能,包括模拟步骤流程如输入alpha表达式、选择市场标的、设置延迟、因子平滑参数、中性化方式、权重限制等,并提及了重要的评价指标如夏普比、收益和回撤。以市值因子为例展示了实际操作过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:本文介绍Alpha的相关基本概念,以及寻找和检验Alpha的主要流程和方法。在上篇中我们梳理了 WorldQuant经典读本FindingAlphas的概要以及WebSim的使用。作为下篇,我们演示如何通过BigQuant平台可以复现WebSim的因子分析功能,可以只输入因子表达式以及一些相关参数,便能够获取因子分析的相关结果。

模拟步骤流程

1、 输入测试的alpha表达式:在左上方m6输入特征列表模块中输入表达式。 2、 选择市场标的范围

  • topN:代表选取流动性排名前N的股票作为证券池,在m4自定义模块中设置股票池范围,默认2000

img

3、 设置Delay: 延迟1(默认设置)表示alpha将使用昨天的数据(价格等)。延迟0意味着alpha将使用今天的数据。本例中默认会输出close_0/close_1和close_0/open_0两类Alpha,对应着延迟0和延迟1,因此无需设置。

4、 设置Decay: 代表因子平滑的参数,decay其实就是下面表达式中的n,默认是4 Decay_linear (x, n) = (x[date] * n x[date - 1] * (n - 1)… X[date - N - 1]) / (n (n - 1)… 1) 可以在m5模块中设置此参数:

img

5、 设置中性化:

  • neuralized_type:代表中性化的方式,分别有market和industry两种方式 可以在自定义模块m8中设置中性化方式

img

6 设置最大权重限制 :

  • max_stock_weight:代表组合中的单个股票最大权重,默认0.1 也是在自定义模块m8中设置,见上图。

7、 设置本金:

  • Booksize:代表本金,默认本金1千万,2倍杠杠的话就是2千万,在m16模块中设置

img

8、设置回测起止时间 回测起止时间通过证券代码列表m1模块设置。

img

评价指标介绍

  • Long/Short Count: 多空头寸数量

  • PnL: 当期头寸损益(金额)

  • Sharpe: 夏普比

  • Fitness: 定义为Sharpe * abs(Returns) / Turnover

  • Returns: 年化收益率

  • Drawdown: 最大回撤

  • Turnover: 换手率

  • Margin: 定义为PnL / 总交易额

  • Alpha0: 权重是当天因子值,收益率定义:close_0/open_0-1

  • Alpha1: 权重是前一天因子值,收益率定义:close_0/close_1-1

  • Alpha2:权重是前一天因子值,收益率定义:close_0/open_0-1

案例展示:

我们以市值因子作为示例,因子表达式为:-1*market_cap_0。我们在模块m6中输入因子表达式,选择默认参数,点击运行全部。可是以下链接克隆源码:

寻找市场中的Alpha—WorldQuant功能的实现

### 关于WorldQuant Brain因子 WorldQuant Brain 是一种基于机器学习技术构建的投资策略开发工具,其核心功能在于通过自动化算法生成潜在有效的 Alpha 因子。这些因子可以用于预测股票价格的变化趋势并优化投资组合的表现。 #### 1. **WorldQuant Brain 的基本概念** WorldQuant Brain 利用了大量的历史数据以及复杂的统计学方法来发现市场中的隐藏模式,并将其转化为可量化的交易信号。它能够自动测试多种变量之间的关系,从而筛选出具有高信息比率的因子[^1]。 #### 2. **使用方法概述** 为了利用 WorldQuant Brain 构建自定义因子,通常需要遵循以下流程: - 数据准备阶段:收集必要的金融时间序列数据(如股价、成交量等),并将它们导入到支持该系统的平台上。 - 参数设定环节:调整训练过程中的超参数设置,比如窗口大小、延迟周期数目以及其他影响模型性能的关键属性。 - 执行运算操作:启动程序执行完整的回测循环,在此期间会评估每一个候选因子的有效性指标得分情况。 以下是实现上述逻辑的一个简化 Python 示例代码片段: ```python from bigquant import * def run_brain_factor(data, target_column='close', window=20): """ 使用 BigQuant 平台上的 WorldQuant Brain 功能创建新的 alpha 因子 Args: data (DataFrame): 输入的历史行情数据集 target_column (str): 预测目标列名称,默认收盘价 'close' window (int): 计算移动平均所需的时间窗长度 Returns: DataFrame: 包含原始特征加上新增加 brain factor 的扩展版表格 """ # 添加基础的技术指标作为输入特性的一部分 data['ma'] = ts_mean(data[target_column], window) # 调用内置函数生成复杂型脑部启发式因子 result_df = worldquant_brain(data).dropna() return result_df ``` 注意这段伪代码仅作示意用途,实际应用时可能还需要考虑更多细节问题,例如异常值处理方式或者缺失值填补机制等方面的内容[^2]。 #### 3. **文档与API资源链接建议** 对于希望深入了解如何运用此类先进技术手段来进行量化研究的学习者来说,可以从以下几个方面入手获取更多信息: - 官方教程页面提供了详尽的操作指南和具体实例演示; - GitHub 上开源项目仓库里往往包含了丰富的脚本文件可供参考模仿; - 社区论坛则是交流心得体验的好去处,那里聚集了许多经验丰富的实践者愿意分享自己的见解。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值