101个α因子#1

(rank(Ts_ArgMax(SignedPower(((returns < 0) ? stddev(returns, 20) : close), 2.), 5)) - 0.5)

worldquant brain平台上调整后的语法:

(rank(Ts_Arg_Max(Signed_Power(((returns < 0) ? ts_std_dev(returns, 20) : close), 2.), 5)) - 0.5)

这个alpha因子的逻辑可以分为以下几个步骤:

  1. 条件选择数值源

    • 当某天的收益率为负时,使用过去20天收益率的标准差(波动率)。
    • 当收益率为非负时,使用当天的收盘价(close)。
  2. 符号保留的平方变换

    • 对上述选择的数值进行Signed_Power(保留符号的平方运算)。由于标准差和收盘价均为正数,此处等价于普通平方操作,结果均为正数。
  3. 寻找最大值位置

    • 计算过去5天内平方后的最大值出现的时间位置Ts_Arg_Max)。该值越小,表示最大值越近(0为当天,4为5天前)。
  4. 横截面排名

    • 对所有股票的“最大值位置”进行排名(rank),转化为0到1之间的分位数。
  5. 中性化处理

    • 将排名减去0.5,使因子值围绕0对称,正值表示近期出现极值,负值反之。

逻辑解析

  • 下跌时波动放大:当收益率为负时,使用波动率平方,捕捉恐慌或超卖信号。
  • 上涨时价格动量:当收益率为正时,使用收盘价平方,追踪价格趋势强度。
  • 时间敏感性:通过Ts_Arg_Max识别极值的新近程度,近期极值可能预示趋势延续或反转。
  • 横截面比较:排名机制筛选近期表现突出的股票,做多强势股,做空弱势股。

潜在策略意图
该因子试图结合波动率突变和价格动量,捕捉短期市场过度反应后的修正机会或趋势延续信号。近期出现极值的股票可能更具方向性动能,通过排名中性化处理构建多空组合。
在这里插入图片描述
在这里插入图片描述
目前没有调整至可提交的状态。欢迎留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值