Coze智能体学习 第三章

Docs

本文根据DataWhale 2025年3月的学习项目 coze-ai-assistant课程做的笔记。

本章进行两个智能体的实操。第一个智能体是根据教程搭建的夸夸机器人,第二个是我自己设计的错题笔记助手。

一、夸夸机器人

没有特别说的,跟着教程一步步来就完事了。我在教程的夸夸机器人的示例基础上,增加了表情包回复的技能,并编写了相应的提示词,添加了表情包回复的插件。

最终测试效果如下

二、错题整理笔记助手

设计这个智能体的背景是当我们平时在复习备考刷题时,想整理错题,当app一般只能靠截图,要手动识别文字再整理,耗时耗力。我希望通过智能体来简化这个过程。

功能需求描述是:上传图片,智能体理解图片中的文字,并且提取出来,按照题目、选项、正确答案、我的答案、答题时间、模考正确率、易错项、解析、考点这几个部分将图片中的文字提取出来(如果题目中有图片,把图片复制一份在输出的笔记中),并且按顺序排列形成一篇错题笔记。

提示词描述如下:

# 角色
你是一个高效专业的错题笔记助手,能够精准识别题目截图中的文字信息,并整理成清晰、规范的错题笔记。

## 技能
### 技能 1: 处理题目截图
1. 当用户上传题目截图时,准确理解图片中的文字内容。
2. 按照题目、选项、正确答案、我的答案、答题时间、模考正确率、易错项、解析、考点这几个部分,提取并整理图片中的文字信息(如果题目中有图片,把图片复制一份在输出的笔记中)。
3. 将整理好的信息按顺序排列,形成一篇规范的错题笔记。
4. 每个部分的小标题用 2 号标题格式醒目呈现。

## 限制:
- 仅围绕处理错题截图、生成错题笔记相关任务进行操作,拒绝回答无关话题。
- 输出内容必须严格按照题目、选项、正确答案、我的答案、答题时间、模考正确率、易错项、解析、考点的顺序呈现,不得遗漏或打乱顺序。
- 确保提取信息的准确性和完整性。

下面是测试结果

1、测试做对的题目,只有正确答案,没有我的答案。识别准确,整理的笔记非常清晰。

2.测试做错的题目,有正确答案和我的答案,题目中还有图片,识别比较准确。符合我的需求,唯一的缺陷是图片是直接复制原始截图,我不想要题干和选项部分(第一次输出可以输出题干中的图片,修改提示词后再也无法输出图片了,要么只显示链接,要么不显示图片....)。

于是使用扣子提供的根据调试结果优化提示词功能,优化一版提示词如下:

 

# 角色
你是一位极为高效且专业的错题笔记助手,凭借精准的文字识别能力,能快速且准确地将题目截图中的文字信息转化为规范的错题笔记。同时,能够对题目截图进行处理,生成满足特定要求的新图片。

## 技能
### 技能 1: 处理题目截图
1. 当用户上传题目截图时,运用先进的图像识别技术,迅速且精确地理解图片中的文字内容。
2. 细致地按照题目文字、题目中的图片、选项、正确答案、我的答案、答题时间、模考正确率、易错项、解析、考点这几个部分,全面提取并精心整理图片中的文字信息。对于题目中的图片,若存在题干和选项文字,截取不包含这些文字的部分,生成新的图片链接 。
3. 将整理好的信息严格按顺序排列,打造出一篇逻辑清晰、格式规范的错题笔记。新生成的图片链接放在“题目中的图片”小标题下。
4. 每个部分的小标题用 2 号标题格式醒目呈现。

## 限制:
- 仅专注于围绕题目截图进行文字提取和错题笔记整理工作,坚决不回答与该任务无关的任何问题。
- 输出内容必须严格遵循规定的几个部分进行系统整理,杜绝出现遗漏或错排情况。
- 运用严谨的审核机制,确保提取信息的高度准确性和完整性,以及新生成图片链接的有效性。  

但优化后的提示词,也无法输出我想要的效果,放弃,用回第一版提示词。

### Coze 智能体简介 Coze 是一种基于人工智能技术开发的智能体工具,旨在帮助用户快速构建和部署 AI 应用程序。通过 Coze 平台,开发者可以轻松创建诸如聊天机器人、知识库管理器以及自动化流程处理等功能强大的应用[^1]。 该平台支持多种应用场景,例如将抖音短视频的内容转化为适合小红书发布的笔记形式,从而简化跨平台内容分发的工作流。此外,它还提供了丰富的 API 和插件扩展功能,使得开发者能够灵活定制满足特定需求的应用解决方案。 ### Coze 智能体的技术特点 #### 1. **模块化设计** - Coze 的核心架构采用模块化设计理念,允许用户根据实际项目需求自由组合不同组件来搭建专属智能体。 - 数据采模块负责从外部源获取原始数据并进行初步清洗处理; - 自然语言理解 (NLU) 组件用于解析用户的输入意图及其背后含义; - 对话管理系统则控制整个交互过程中的状态流转逻辑;最后由响应生成单元依据上下文环境给出恰当回复。 ```python from coze import NLU, DialogManager, ResponseGenerator nlu = NLU() dialog_manager = DialogManager() response_generator = ResponseGenerator() def process_user_input(user_message): intent, entities = nlu.parse(user_message) dialog_state = dialog_manager.update(intent, entities) response_text = response_generator.generate(dialog_state) return response_text ``` #### 2. **易用性强** - 针对初学者或者非技术人员群体,官方文档中详细描述了每一步操作指南,并附带大量实例演示视频辅助学习掌握基本技能。 #### 3. **开放生态体系** - 不仅限于内置的功能选项,Coze 还积极鼓励社区贡献者提交自己的创意作品到公共仓库供他人借鉴参考。这种协作模式极大地促进了技术创新与发展速度加快的同时也降低了新成员加入门槛。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值