cuda安装以及conda安装对应版本的pytorch-gpu

本教程详细介绍了如何在CUDA 11.0环境下,通过conda安装对应版本的PyTorch-GPU。首先,从NVIDIA官网下载CUDA和CUDNN,并确保版本对应。接着,创建conda虚拟环境,通过清华镜像离线下载PyTorch-GPU的特定版本,最后配置环境变量并测试安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@[TOC] conda安装pytorch-gpu

参考资料

(1)PyTorch(GPU版)详细安装教程(b站视频)
https://www.bilibili.com/video/BV1Rz411e7eJ?from=search&seid=2681659812081276827
(2)实验室兄弟自己写的安装方法
https://blog.csdn.net/zengding5524/article/details/109484757
(3)相关网站
CUDA下载:https://developer.nvidia.com/cuda-toolkit-archive
CUDNN下载:https://developer.nvidia.com/rdp/cudnn-download
pytorch下载:pytorch.org

步骤

CUDA 和 CUDNN 下载

(cuda 和 cudnn 一定要下载对应版本)

cuda 和 cudnn下载对应版本

(1)首先查看自己的cuda版本
在这里插入图片描述
(注:在右上角,显示您的显卡目前的cuda驱动版本,比如上图显示为11.0,要注意,这里并不是表明您已经安装了cudatookit&#x

### 使用 Conda 安装 CUDA 11.1 的方法 虽然传统的 CUDA 安装方式通常涉及 NVIDIA 提供的 `.run` 或者 `.deb` 文件,但在 Ubuntu 系统上可以通过 Conda 更方便地管理依赖关系并安装特定版本CUDA 工具包。以下是关于如何在 Ubuntu 上使用 Conda 安装 CUDA 11.1 的说明。 #### 创建新的 Conda 环境 为了确保不同项目之间的兼容性和隔离性,建议先创建一个新的 Conda 环境: ```bash conda create -n cuda_env python=3.8 ``` 激活该环境: ```bash conda activate cuda_env ``` #### 安装 CUDA 11.1 Conda 支持直接安装指定版本CUDA 工具包。运行以下命令来安装 CUDA 11.1 及其相关组件: ```bash conda install cudatoolkit=11.1 ``` 此命令会自动解析并安装CUDA 11.1 兼容的相关库和工具集[^1]。 #### 验证安装 完成安装后,可通过以下命令验证 CUDA 是否成功安装以及当前使用的版本号: ```bash nvcc --version ``` 如果 `nvcc` 命令不可用,则可能需要手动配置 PATH 和 LD_LIBRARY_PATH 环境变量以指向 Conda 中的 CUDA 路径。例如,在 Bash Shell 下执行以下命令: ```bash export PATH=$PATH:/home/$USER/.conda/envs/cuda_env/bin/ export LD_LIBRARY_PATH=/home/$USER/.conda/envs/cuda_env/lib/:$LD_LIBRARY_PATH ``` 上述路径需根据实际用户名和 Conda 环境位置调整[^2]。 #### CUDNN 库支持 对于深度学习框架(如 PyTorch 或 TensorFlow),除了基础 CUDA 外还需要额外安装 cuDNN。尽管传统方法推荐从 NVIDIA 官方网站下载 tar.gz 并复制头文件及动态链接库至目标目录[^3],但借助 Conda 则可简化这一过程: ```bash conda install cudnn ``` 这条语句能够依据已选定的 CUDA 版本适配合适的 cuDNN 版本[^4]。 #### 总结注意事项 - 如果计划在同一台机器上部署多个 CUDA 版本,请务必利用虚拟环境区分各个开发场景下的需求。 - 对于 GPU 加速计算而言,驱动程序版本同样至关重要;确认所选驱动满足最低要求的同时也要避免过高版本引发未知错误。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值