离散数学 - 谓词公式

谓词公式

原子谓词公式定义:

  由n原谓词P和n个个体变元x1, x2, …, xn构成的不包含 任何量词和命题联结词的式子P(x1, x2, …, xn )称为原子谓词公式。

谓词公式递归定义:
  1. 原子谓词公式 P ( x ) P(x) P(x)是谓词公式;
  2. 若P(x)是谓词公式,则 ∀ P ( x ) \forall P(x) P(x) ∃ x P ( x ) \exists xP(x) xP(x) 也是谓词公式;
  3. A A A, B B B是谓词公式,则 ¬ A \neg A ¬A A ∨ B A\vee B AB, A ∧ B A\land B AB, A → B A\to B AB, A ↔ B A\leftrightarrow B AB也是;
  4. 只有有限次地应用(1)—(3) 形成的符号串才是谓词公式
辖域,约束变元,自由变元:

对一个量词,若后面有括号,则括号内的公式为该量词的辖域;若后面无括号,则紧跟量词后面的最小的子公式 就是该量词的辖域。
注:若两个量词相邻,则后一个量词在前一个量词的辖域内.
在量词辖域中出现的变元称为约束变元,不在量词辖域中出现的变元称为是自由变元

变元改名:

使每个个体变元只以一种形式出现在公式中:

  1. 只对约束变元改名,对自由变元改名;
  2. 改名必须处处进行,即对约束变元改名时,必须对该量词辖域内的每个受该量词约束的约束变元改名;
  3. 改名后的符号必须是该量词辖域内未出现过的符号,最好是整个公式中未出现过的符号;
  4. 改名前后公式的含义不变
谓词公式的指派:

谓词公式A中含n个自由个体变元 x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn和k个命题变元 p 1 , p 2 , . . . , p k p_1, p_2, ..., p_k p1,p2,...,pk,则 x 1 , x 2 , . . . , x n , p 1 , p 2 , . . . , p k x_1, x_2, ..., x_n, p_1, p_2, ..., p_k x1,x2,...,xn,p1,p2,...,pk的一组取值称作谓词公式A的一个指派

谓词等值式

定义6:若设A, B是两个谓词公式, 如果A ↔ \leftrightarrow B是永真式, 则称A与B等值, 记作A ⇔ \Leftrightarrow B, 并称A ⇔ \Leftrightarrow B是等值式。
基本等值式:

由命题等值式推广出的谓词等值式.

一元谓词等值式:
  1. 消去量词等值式
    对于: D = { a 1 , a 1 , . . . , a n , } D= \{a_1,a_1,...,a_n,\} D={a1,a1,...,an,}
    ∀ x A ( x ) ⇔ A ( a 1 ) ∧ A ( a 1 ) ∧ A ( a 1 ) ∧ . . . A ( a n ) \forall xA(x) \Leftrightarrow A(a_1)\land A(a_1)\land A(a_1)\land ...A(a_n) xA(x)A(a1)A(a1)A(a1)...A(an)
    ∃ x A ( x ) ⇔ A ( a 1 ) ∨ A ( a 1 ) ∨ A ( a 1 ) ∨ . . . A ( a n ) \exists xA(x) \Leftrightarrow A(a_1)\vee A(a_1)\vee A(a_1)\vee ...A(a_n) xA(x)A(a1)A(a1)A(a1)...A(an)

  2. 量词否定等值式
    ¬ ∀ x A ( x ) ⇔ ∃ x ¬ A ( x ) \neg\forall xA(x) \Leftrightarrow \exists x \neg A(x) ¬xA(x)x¬A(x)
    ¬ ∃ x A ( x ) ⇔ ∀ x ¬ A ( x ) \neg\exists xA(x) \Leftrightarrow \forall x \neg A(x) ¬xA(x)x¬A(x)

  3. 量词辖域收缩与扩张等值式:
    A(x) 是含 x 自由出现的公式,B 中不含 x 的自由出现
    关于全称量词的:
    ∀ x ( A ( x ) ∨ B ) ⇔ ∀ x A ( x ) ∨ B \forall x(A(x)\vee B) \Leftrightarrow \forall xA(x)\vee B x(A(x)B)xA(x)B
    ∀ x ( A ( x ) ∧ B ) ⇔ ∀ x A ( x ) ∧ B \forall x(A(x)\land B) \Leftrightarrow \forall xA(x)\land B x(A(x)B)xA(x)B
    ∀ x ( A ( x ) → B ) ⇔ ∃ x A ( x ) → B \forall x(A(x)\to B) \Leftrightarrow \exists xA(x)\to B x(A(x)B)xA(x)B
    ∀ x ( B → A ( x ) ) ⇔ B → ∀ x A ( x ) \forall x(B\to A(x)) \Leftrightarrow B\to \forall xA(x) x(BA(x))BxA(x)
    关于存在量词的:
    ∃ x ( A ( x ) ∨ B ) ⇔ ∃ x A ( x ) ∨ B \exists x(A(x)\vee B) \Leftrightarrow \exists xA(x)\vee B x(A(x)B)xA(x)B
    ∃ x ( A ( x ) ∧ B ) ⇔ ∃ x A ( x ) ∧ B \exists x(A(x)\land B) \Leftrightarrow \exists xA(x)\land B x(A(x)B)xA(x)B
    ∃ x ( A ( x ) → B ) ⇔ ∀ x A ( x ) → B \exists x(A(x)\to B) \Leftrightarrow \forall xA(x)\to B x(A(x)B)xA(x)B
    ∃ x ( B → A ( x ) ) ⇔ B → ∃ x A ( x ) \exists x(B\to A(x)) \Leftrightarrow B\to \exists xA(x) x(BA(x))BxA(x)

  4. 量词分配等值式:
    ∀ x ( A ( x ) ∧ B ( x ) ) ⇔ ∀ x A ( x ) ∧ ∀ x B ( x ) \forall x(A(x)\land B(x))\Leftrightarrow \forall xA(x) \land \forall xB(x) x(A(x)B(x))xA(x)xB(x)
    ∃ x ( A ( x ) ∨ B ( x ) ) ⇔ ∃ x A ( x ) ∨ ∃ x B ( x ) \exists x(A(x) \vee B(x))\Leftrightarrow \exists xA(x) \vee \exists xB(x) x(A(x)B(x))xA(x)xB(x)
    ∀ x A ( x ) ∨ ∀ x B ( x ) ⇒ ∀ x ( A ( x ) ∨ B ( x ) ) \forall xA(x) \vee \forall xB(x) \Rightarrow\forall x(A(x)\vee B(x)) xA(x)xB(x)x(A(x)B(x))
    ∃ x ( A ( x ) ∧ B ( x ) ) ⇒ ∃ x A ( x ) ∧ ∃ x B ( x ) \exists x(A(x) \land B(x))\Rightarrow \exists xA(x) \land \exists xB(x) x(A(x)B(x))xA(x)xB(x)

二元谓词等值式:

∀ x ∀ y A ( x , y ) ⇔ ∀ y ∀ x A ( x , y ) \forall x\forall y A(x, y)\Leftrightarrow \forall y\forall x A(x, y) xyA(x,y)yxA(x,y)
∃ x ∃ y A ( x , y ) ⇔ ∃ y ∃ x A ( x , y ) \exists x\exists y A(x, y)\Leftrightarrow \exists y\exists x A(x, y) xyA(x,y)yxA(x,y)

注意:两个相邻量词的性质不同时,一般不可以互换.

前束范式:

定义: 设A为一个一阶逻辑公式,若A中的量词只在前面.则成之为前束范式.

前束范式存在定理: 任一谓词公式都存在与之等值 的前束范式。

注意: 前束范式不唯一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值