谓词公式
原子谓词公式定义:
由n原谓词P和n个个体变元x1, x2, …, xn构成的不包含 任何量词和命题联结词的式子P(x1, x2, …, xn )称为原子谓词公式。
谓词公式递归定义:
- 原子谓词公式 P ( x ) P(x) P(x)是谓词公式;
- 若P(x)是谓词公式,则 ∀ P ( x ) \forall P(x) ∀P(x), ∃ x P ( x ) \exists xP(x) ∃xP(x) 也是谓词公式;
- 若 A A A, B B B是谓词公式,则 ¬ A \neg A ¬A , A ∨ B A\vee B A∨B, A ∧ B A\land B A∧B, A → B A\to B A→B, A ↔ B A\leftrightarrow B A↔B也是;
- 只有有限次地应用(1)—(3) 形成的符号串才是谓词公式
辖域,约束变元,自由变元:
对一个量词,若后面有括号,则括号内的公式为该量词的辖域;若后面无括号,则紧跟量词后面的最小的子公式 就是该量词的辖域。
注:若两个量词相邻,则后一个量词在前一个量词的辖域内.
在量词辖域中出现的变元称为约束变元,不在量词辖域中出现的变元称为是自由变元
变元改名:
即使每个个体变元只以一种形式出现在公式中:
- 只对约束变元改名,不对自由变元改名;
- 改名必须处处进行,即对约束变元改名时,必须对该量词辖域内的每个受该量词约束的约束变元改名;
- 改名后的符号必须是该量词辖域内未出现过的符号,最好是整个公式中未出现过的符号;
- 改名前后公式的含义不变。
谓词公式的指派:
设谓词公式A中含n个自由个体变元 x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn和k个命题变元 p 1 , p 2 , . . . , p k p_1, p_2, ..., p_k p1,p2,...,pk,则 x 1 , x 2 , . . . , x n , p 1 , p 2 , . . . , p k x_1, x_2, ..., x_n, p_1, p_2, ..., p_k x1,x2,...,xn,p1,p2,...,pk的一组取值称作谓词公式A的一个指派。
谓词等值式
定义6:若设A, B是两个谓词公式, 如果A ↔ \leftrightarrow ↔B是永真式, 则称A与B等值, 记作A ⇔ \Leftrightarrow ⇔B, 并称A ⇔ \Leftrightarrow ⇔B是等值式。
基本等值式:
由命题等值式推广出的谓词等值式.
一元谓词等值式:
-
消去量词等值式
对于: D = { a 1 , a 1 , . . . , a n , } D= \{a_1,a_1,...,a_n,\} D={a1,a1,...,an,}
∀ x A ( x ) ⇔ A ( a 1 ) ∧ A ( a 1 ) ∧ A ( a 1 ) ∧ . . . A ( a n ) \forall xA(x) \Leftrightarrow A(a_1)\land A(a_1)\land A(a_1)\land ...A(a_n) ∀xA(x)⇔A(a1)∧A(a1)∧A(a1)∧...A(an)
∃ x A ( x ) ⇔ A ( a 1 ) ∨ A ( a 1 ) ∨ A ( a 1 ) ∨ . . . A ( a n ) \exists xA(x) \Leftrightarrow A(a_1)\vee A(a_1)\vee A(a_1)\vee ...A(a_n) ∃xA(x)⇔A(a1)∨A(a1)∨A(a1)∨...A(an) -
量词否定等值式
¬ ∀ x A ( x ) ⇔ ∃ x ¬ A ( x ) \neg\forall xA(x) \Leftrightarrow \exists x \neg A(x) ¬∀xA(x)⇔∃x¬A(x)
¬ ∃ x A ( x ) ⇔ ∀ x ¬ A ( x ) \neg\exists xA(x) \Leftrightarrow \forall x \neg A(x) ¬∃xA(x)⇔∀x¬A(x) -
量词辖域收缩与扩张等值式:
A(x) 是含 x 自由出现的公式,B 中不含 x 的自由出现
关于全称量词的:
∀ x ( A ( x ) ∨ B ) ⇔ ∀ x A ( x ) ∨ B \forall x(A(x)\vee B) \Leftrightarrow \forall xA(x)\vee B ∀x(A(x)∨B)⇔∀xA(x)∨B
∀ x ( A ( x ) ∧ B ) ⇔ ∀ x A ( x ) ∧ B \forall x(A(x)\land B) \Leftrightarrow \forall xA(x)\land B ∀x(A(x)∧B)⇔∀xA(x)∧B
∀ x ( A ( x ) → B ) ⇔ ∃ x A ( x ) → B \forall x(A(x)\to B) \Leftrightarrow \exists xA(x)\to B ∀x(A(x)→B)⇔∃xA(x)→B
∀ x ( B → A ( x ) ) ⇔ B → ∀ x A ( x ) \forall x(B\to A(x)) \Leftrightarrow B\to \forall xA(x) ∀x(B→A(x))⇔B→∀xA(x)
关于存在量词的:
∃ x ( A ( x ) ∨ B ) ⇔ ∃ x A ( x ) ∨ B \exists x(A(x)\vee B) \Leftrightarrow \exists xA(x)\vee B ∃x(A(x)∨B)⇔∃xA(x)∨B
∃ x ( A ( x ) ∧ B ) ⇔ ∃ x A ( x ) ∧ B \exists x(A(x)\land B) \Leftrightarrow \exists xA(x)\land B ∃x(A(x)∧B)⇔∃xA(x)∧B
∃ x ( A ( x ) → B ) ⇔ ∀ x A ( x ) → B \exists x(A(x)\to B) \Leftrightarrow \forall xA(x)\to B ∃x(A(x)→B)⇔∀xA(x)→B
∃ x ( B → A ( x ) ) ⇔ B → ∃ x A ( x ) \exists x(B\to A(x)) \Leftrightarrow B\to \exists xA(x) ∃x(B→A(x))⇔B→∃xA(x) -
量词分配等值式:
∀ x ( A ( x ) ∧ B ( x ) ) ⇔ ∀ x A ( x ) ∧ ∀ x B ( x ) \forall x(A(x)\land B(x))\Leftrightarrow \forall xA(x) \land \forall xB(x) ∀x(A(x)∧B(x))⇔∀xA(x)∧∀xB(x)
∃ x ( A ( x ) ∨ B ( x ) ) ⇔ ∃ x A ( x ) ∨ ∃ x B ( x ) \exists x(A(x) \vee B(x))\Leftrightarrow \exists xA(x) \vee \exists xB(x) ∃x(A(x)∨B(x))⇔∃xA(x)∨∃xB(x)
∀ x A ( x ) ∨ ∀ x B ( x ) ⇒ ∀ x ( A ( x ) ∨ B ( x ) ) \forall xA(x) \vee \forall xB(x) \Rightarrow\forall x(A(x)\vee B(x)) ∀xA(x)∨∀xB(x)⇒∀x(A(x)∨B(x))
∃ x ( A ( x ) ∧ B ( x ) ) ⇒ ∃ x A ( x ) ∧ ∃ x B ( x ) \exists x(A(x) \land B(x))\Rightarrow \exists xA(x) \land \exists xB(x) ∃x(A(x)∧B(x))⇒∃xA(x)∧∃xB(x)
二元谓词等值式:
∀
x
∀
y
A
(
x
,
y
)
⇔
∀
y
∀
x
A
(
x
,
y
)
\forall x\forall y A(x, y)\Leftrightarrow \forall y\forall x A(x, y)
∀x∀yA(x,y)⇔∀y∀xA(x,y)
∃
x
∃
y
A
(
x
,
y
)
⇔
∃
y
∃
x
A
(
x
,
y
)
\exists x\exists y A(x, y)\Leftrightarrow \exists y\exists x A(x, y)
∃x∃yA(x,y)⇔∃y∃xA(x,y)
注意:两个相邻量词的性质不同时,一般不可以互换.
前束范式:
定义: 设A为一个一阶逻辑公式,若A中的量词只在前面.则成之为前束范式.
前束范式存在定理: 任一谓词公式都存在与之等值 的前束范式。
注意: 前束范式不唯一