谓词逻辑的推理
在前面学习了命题逻辑的推理,但是用其却无法证明苏格拉底论证的有效性,这是由于原子命题包含的信息量太少,无法将苏格拉底论证的条件和结论准确的表示出来,因此,我们引入了谓词与量词.借助它们,我们能更精确的将自然语言转化为数学语言,而下一步,就是与命题逻辑的推理相对应的谓词逻辑的推理.
主要内容:
- 推理规则
- 例题示范
推理规则:
-
全称量词的消去规则(US):
全称量词的基本属性是"任意",也就是说,如果个体域的所有个体都具有性质A,则个体域中的任一个个体都具有性质A。
公式: ∀ x A ( x ) ⇒ A ( y ) \forall xA(x)\Rightarrow A(y) ∀xA(x)⇒A(y)或者 ∀ x A ( x ) ⇒ A ( c ) \forall xA(x)\Rightarrow A(c) ∀xA(x)⇒A(c)
换成常元还是变元主要取决于要证明结论的形式
规则成立的条件:- 取代x的y应为任意不在A(x)中约束出现的个体变元;
- 用y取代A(x)中自由出现的x时,必须将所有的x都取代;
- 自由变元y也可替换为个体域中任意的个体常元c, c为任意不在A(x)中出现过的个体常元。
第1和3说白了就是别和其他的符号重复
-
存在量词的消去规则(ES):
存在量词的属性是"存在",即, 如果个体域存在有性质A的个体,则个体域中必有某一个个体具有性质A。
公式: ∃ x A ( x ) ⇒ A ( c ) \exists xA(x)\Rightarrow A(c) ∃xA(x)⇒A(c)
规则成立的条件:- c是个体域中使A为真的特定的个体常元;(特定的)
- c不曾在A(x)或前面的推导公式中出现过;(别重复)
- A(x)中除了自由出现的x外,还有其他自由出现的个体变项是,不能用此规则. (在具体题目中很少见)
前两个显而易见,对于第3个考虑 ∃ y F ( x , y ) \exists yF(x, y) ∃yF(x,y),并不能得出 F ( x , c ) F(x, c) F(x,c),F(x, c)表示的是对于指定的c, 任意的x都满足F.错误在于:c的具体指定可能与x的取值有关,比如F表示大小关系.
-
全称量词的引入规则:
如果个体域的任意个体都具有性质A,则个体域中的所有个体都具有性质A。(显而易见)
公式: A ( y ) ⇒ ∀ x A ( x ) A(y)\Rightarrow \forall xA(x) A(y)⇒∀xA(x)
规则成立的条件:
1.y在A(y)中自由出现,且y取任何值时A均为真;
2. x不在A(y)中约束出现。(符号别重复就行) -
存在量词的引入规则:
如果个体域有某一个个体c具有性质A,则个体域中必存在具有性质A的个体.即,能找出一个就表示存在.
公式: A ( c ) ⇒ ∃ x A ( x ) A(c)\Rightarrow\exists xA(x) A(c)⇒∃xA(x)
规则成立的条件:- c是个体域中某个确定的个体;
- 代替c的x不在A©中出现过.(还是符号别重复)
例题示范:
例: 用谓词逻辑构造并证明下述推理的有效性:
每个喜欢步行的人都不喜欢坐汽车;每个人或者喜欢坐汽车或者喜欢骑自行车;有的人不喜欢骑自行车;因而有的人不喜欢步行。
解:
取人为全总个体域:设P(x)表示x喜欢步行;Q(x)表示x喜欢坐汽车;R(x)表示x喜欢骑自行车.
即证,
∀
x
(
P
(
x
)
→
¬
Q
(
x
)
)
,
∀
x
(
Q
(
x
)
∨
R
(
x
)
)
,
∃
x
¬
R
(
x
)
⇒
∃
x
¬
P
(
x
)
\forall x(P(x)\rightarrow\neg Q(x)), \forall x(Q(x) \vee R(x)), \exists x\neg R(x)\Rightarrow\exists x\neg P(x)
∀x(P(x)→¬Q(x)),∀x(Q(x)∨R(x)),∃x¬R(x)⇒∃x¬P(x)
①
∃
x
¬
R
(
x
)
\exists x\neg R(x)
∃x¬R(x) P
②
¬
R
(
c
)
\neg R(c)
¬R(c) T①ES
③
∀
x
(
Q
(
x
)
∨
P
(
x
)
)
\forall x(Q(x)\vee P(x))
∀x(Q(x)∨P(x)) P
④
(
Q
(
c
)
∨
P
(
c
)
)
(Q(c)\vee P(c))
(Q(c)∨P(c)) T③US
⑤
Q
(
c
)
Q(c)
Q(c) T②④I
⑥
∀
x
(
P
(
x
)
→
¬
Q
(
x
)
)
\forall x(P(x)\rightarrow\neg Q(x))
∀x(P(x)→¬Q(x)) P
⑦
P
(
c
)
→
¬
Q
(
c
)
P(c)\rightarrow\neg Q(c)
P(c)→¬Q(c) T⑥US
⑧
Q
(
c
)
→
¬
P
(
c
)
Q(c)\rightarrow\neg P(c)
Q(c)→¬P(c) R⑦E
⑨
¬
P
(
c
)
\neg P(c)
¬P(c) T⑤⑧I
⑩
∃
x
¬
P
(
x
)
\exists x\neg P(x)
∃x¬P(x) T⑨EG