离散数学
PGZXB
这个作者很懒,什么都没留下…
展开
-
离散数学 - 图论(3)-图的矩阵表示
图论(3)-图的矩阵表示设G=是有向图, 其中V={v1,v2,…,vnv_1 ,v_2 ,…,v_nv1,v2,…,vn}, 并假定各结点已经有了从v1v_1v1到vn的次序。定义一个n×n的矩阵∗∗A∗∗,其中各元素v_n的次序。定义一个n×n的矩阵**A**, 其中各元素vn的次序。定义一个n×n的矩阵∗∗A∗∗,其中各元素a_{ij}$为[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j8p9r3lX-1597284496545)(en-resourc原创 2020-08-13 10:09:23 · 1253 阅读 · 0 评论 -
离散数学 - 图论(2)-路径和回路
图论(2)-路径和回路在有向图中,从顶点v0v_0v0到顶点vnv_nvn的一条路径是图中的边的序列, 其中每一条边的终点是下一条边的起点。一条路径中, 如果同一条边不出现两次, 则称此路径是简单路径。一条路径中,如果同一顶点不出现两次, 则称此路径是基本路径(或叫链)。如果路径的始点v0v_0v0和终点vnv_nvn相重合, 即v0v_0v0=vnv_nvn , 则此路径称为回路,没有相同边的回路称为简单回路, 通过各顶点 不超过一次的回路称为基本回路。路径原创 2020-08-13 10:08:04 · 11416 阅读 · 0 评论 -
离散数学 - 图论(1)-图的基本概念
图论(1)-图的基本概念图的基本概念一个图G是一个二重组 <V,E>, 其中V是非空的节点(vertex)的集合, E是边(edge)的集合.若边e所对应的偶对<a, b>是有序的, 则称e是有向边。 有向边简称弧, a叫弧e的始点, b叫弧e的终点, 统称为e的端点。若边e所对应的偶对(a,b)是无序的, 则称e是无向边。每一条边都是有向边的图称为有向图。每一条边都是无向边的图称为无向图。如果在图中一些边是有向边,而另一些边是无向边,则称 这原创 2020-08-13 10:05:59 · 1990 阅读 · 0 评论 -
离散数学 - 偏序关系
偏序关系如果集合A上的二元关系R是自反的、反对称的和传递 的, 那么称R为A上的偏序, 称序偶<A, R>为偏序集合。偏序关 系R一般用 ≤ 表示设<A, ≤ >是偏序集,对任意的 x, y∈A, 如果 x < y 且 不存在 z∈A 使得 x < z < y, 则称 y 覆盖 x哈斯图: 利用偏序关系的自反、反对称、传递性进行简化的 关系图。1. 每个结点没有自回路2. 两个连通的结点之间的序关系通过结点位置的高低表示, 位置低的元素的顺原创 2020-08-13 10:05:09 · 13769 阅读 · 0 评论 -
离散数学 - 二元关系(续) - 关系的运算 & 等价关系和划分
二元关系-续关系的运算 & 等价关系和划分关系的运算关系的合成(1).设R1R_1R1是A到B的关系,R2R_2R2是B到C的关系,从A到C的合成关系记为R1R2R_1R_2R1R2定义为R1R2={<a,c>∣a∈A∧c∈C∧∃b(b∈B∧<a,b>∈R1∧<b,c>∈R2)}\small R_1R_2=\{<a, c>| a\in A\land c\in C\land\exists b(b\in B\land <a,原创 2020-08-13 10:04:41 · 4161 阅读 · 0 评论 -
离散数学 - 二元关系
二元关系基本概念AxBAxBAxB的子集叫做A到B的一个二元关系,当A=BA=BA=B时叫做A上的二元关系A1xA2xA2x...xAn(n>‾1)A_1xA_2xA_2x...xA_n(n\underline{>}1)A1xA2xA2x...xAn(n>1)的子集叫做A1xA2xA2x...xAnA_1xA_2xA_2x...xA_nA1xA2xA2x...xAn上的一个n元关系An=A1xA2xA2x...xAn(n>‾1)A^n=A_1xA_2x原创 2020-08-13 10:03:22 · 3461 阅读 · 0 评论 -
离散数学 - 集合论
集合论主要内容集合的基本概念集合的运算有限集合的计数集合的笛卡尔积集合的基本概念什么是集合?集合可以理解成由离散的个体构成的整体.同时,成这些个体为集合的元素.常见的数集,有自然数集(N),整数集(Z),有理数集(Q),实数集®,复数集©.集合怎么表示?枚举–一个个列出来谓词表示法(类似于高中的描述法)–通过谓词概括集合的性质同样对于由1, 2, 3组成的集合,枚举法 {1,2,3}\{1, 2, 3\}{1,2,3}谓词法 {x∣1≤x≤3,x∈N}\{ x|原创 2020-08-13 10:02:39 · 794 阅读 · 0 评论 -
离散数学 - 谓词逻辑的推理
谓词逻辑的推理 在前面学习了命题逻辑的推理,但是用其却无法证明苏格拉底论证的有效性,这是由于原子命题包含的信息量太少,无法将苏格拉底论证的条件和结论准确的表示出来,因此,我们引入了谓词与量词.借助它们,我们能更精确的将自然语言转化为数学语言,而下一步,就是与命题逻辑的推理相对应的谓词逻辑的推理.主要内容:推理规则例题示范推理规则:全称量词的消去规则(US):全称量词的基本属性是"任意",也就是说,如果个体域的所有个体都具有性质A,则个体域中的任一个个体都具有性质A。公式:∀xA(x原创 2020-08-13 10:01:54 · 9083 阅读 · 4 评论 -
离散数学 - 谓词公式
谓词公式原子谓词公式定义: 由n原谓词P和n个个体变元x1, x2, …, xn构成的不包含 任何量词和命题联结词的式子P(x1, x2, …, xn )称为原子谓词公式。谓词公式递归定义:原子谓词公式P(x)P(x)P(x)是谓词公式;若P(x)是谓词公式,则∀P(x)\forall P(x)∀P(x),∃xP(x)\exists xP(x)∃xP(x) 也是谓词公式;若AAA, BBB是谓词公式,则¬A\neg A¬A , A∨BA\vee BA∨B, A∧BA\land BA∧B, A原创 2020-08-13 10:00:32 · 13653 阅读 · 0 评论