二元关系-续
关系的运算 & 等价关系和划分
-
关系的运算
-
关系的合成
(1).设 R 1 R_1 R1是A到B的关系, R 2 R_2 R2是B到C的关系,从A到C的合成关系记为 R 1 R 2 R_1R_2 R1R2定义为 R 1 R 2 = { < a , c > ∣ a ∈ A ∧ c ∈ C ∧ ∃ b ( b ∈ B ∧ < a , b > ∈ R 1 ∧ < b , c > ∈ R 2 ) } \small R_1R_2=\{<a, c>| a\in A\land c\in C\land\exists b(b\in B\land <a, b>\in R_1\land <b,c>\in R_2)\} R1R2={<a,c>∣a∈A∧c∈C∧∃b(b∈B∧<a,b>∈R1∧<b,c>∈R2)}
(2). R是A到B的二元关系, I A , I B I_A,I_B IA,IB是A和B上的恒等关系,则 I A R = R I B = R I_AR = RI_B =R IAR=RIB=R
(3). 两个交集为空集的关系的合成关系为空关系
(4). 两个有包含关系的关系同时与另一个关系合并后(符合合并的运算规律)还满足包含关系
(5). R 1 ( R 2 ∪ R 3 ) = ( R 1 R 2 ) ∪ ( R 1 R 3 ) R_1(R_2\cup R_3)= (R_1R_2)\cup(R_1R_3) R1(R2∪R3)=(R1R2)∪(R1R3)
(6). R 1 ( R 2 ∩ R 3 ) ⊆ ( R 1 R 2 ) ∩ ( R 1 R 3 ) R_1(R_2\cap R_3)\subseteq (R_1R_2)\cap(R_1R_3) R1(R2∩R3)⊆(R1R2)∩(R1R3)
(7). 合并满足结合律但不满足交换律(类似矩阵的乘法)
(8). 关系R的非负整数n次幂定义为 R 0 = I A R_0 = I_A R0=IA, R n + 1 = R n R = R R n R^{n+1} = R^nR = RR^n Rn+1=RnR=RRn
(9). 两个关系的合并得到的关系的关系矩阵为两个合并的关系的关系矩阵的布尔乘积(类似于C++中bool与int的转型,元素相乘相加的时候按int的规律,最后转型为bool即可(不是零的都为一))
(10). A是n元集,R是A上的关系,则一定存在自然数s和t,使得 R s = R t R^s = R^t Rs=Rt(A上的不同关系总共就那么 2 n 2 2^{n^2} 2n2种,而 R i R^i Ri(无数个)都为A上的关系,一定有重的) -
关系的逆
(1). R ~ = { < y , x > ∣ < x , y > ∈ R } \tilde{R} = \{<y, x>|<x, y>\in R\} R~={<y,x>∣<x,y>∈R}
(2). 关系矩阵转置即可得到关系的逆的关系矩阵,反转每条关系图中的箭头方向即可得到关系的逆的关系图
(3). ( R S ) ~ = S ~ R ~ \tilde{(RS)} = \tilde{S}\tilde{R} (RS)~=S~R~, (联想矩阵转置的运算性质即可)
(4). 逆的逆可抵消
(5). 逆对 ∪ ∩ − \cup\cap - ∪∩−可分配
(6). 逆和补可交换
(7). 两个关系的\同时求逆后不影响原有的包含关系 -
关系的闭包运算
(1).在A上的关系R的自反/对称/传递闭包是, 在增加最少的关系的条件下而形成的自反/对称/传递的关系.
(2).闭包满足:- R的闭包是自反/对称/传递的(取决于闭包的类型)
- R是R的闭包的子集(增加)
- 对A上任意一个满足自反/对称/传递的关系都是R对应闭包的子集(增加最少)
(3).自反闭包记为r®
(4).对称闭包记为s®
(5).传递闭包记为t®
(6).R是自反的当且仅当其自反闭包与其相等
(7).R是对称的当且仅当其对称闭包与其相等
(8).R是传递的当且仅当其传递闭包与其相等
(9).如何计算闭包?- r ( R ) = R ∪ I A r(R) = R\cup I_A r(R)=R∪IA
- s ( R ) = R ∪ R ~ s(R) = R\cup\tilde{R} s(R)=R∪R~
- t ( R ) = R ∪ R 2 ∪ R 3 ∪ . . . . t(R) = R\cup R^2\cup R^3\cup .... t(R)=R∪R2∪R3∪....
- 另: t ( R ) = R ∪ R 2 ∪ R 3 . . . ∪ R n t(R) = R\cup R^2\cup R^3 ...\cup R^n t(R)=R∪R2∪R3...∪Rn其中n是集合A的基数.
(10).闭包混合运算性质(r分别和另两可交换,t和s不可交换)
- r s ( R ) = s r ( r ) rs(R) = sr(r) rs(R)=sr(r)
- r t ( R ) = t r ( R ) rt(R) = tr(R) rt(R)=tr(R)
- s t ( R ) ⊆ t s ( R ) st(R)\subseteq ts(R) st(R)⊆ts(R)
(11).通常用 R + R^+ R+表示传递闭包
(12).通常用 R ∗ R^* R∗表示自反传递闭包
-
-
等价关系和划分初步
- 一个同时时自反传递对称的关系就称为在集合上的等价关系.R是一个等价关系,若 < x , y > ∈ R <x,y>\in R <x,y>∈R,称为x等价于y记作x~y
- 与x有等价关系的元素所有形成的集合就称为等价类,x关于关系R的等价类记为 [ x ] R = { y ∣ y ∈ A ∧ < x , y > ∈ R } [x]_R = \{y\mid y\in A\land <x,y>\in R\} [x]R={y∣y∈A∧<x,y>∈R}
- 每个等价类都是对应集合上的非空子集
- 两个有等价关系的元素的等价类相同
- 两个没有等价关系的元素的等价类无共有元素(交集为空)
- 一个集合所有等价类的并集即为这个集合
- 设R是A上的二元关系,
R
‘
=
t
s
r
(
R
)
R`=tsr(R)
R‘=tsr(R)是R的自反对称传递闭包(不能胡乱交换)
(1). R ‘ R` R‘ 一定是A上的等价关系,并且记作R诱导的等价关系
(2). R ‘ R` R‘ 一定是包含R的最小的等价关系 - 一个集合A等价关系R的所有等价类形成的集合称为A关于R的商集,记作 A / R = { [ x ] R ∣ x ∈ A } A/R = \{[x]_R\mid x\in A\} A/R={[x]R∣x∈A}
- 给定集合A, 和一堆非空集合(称为集合族) π = { A 1 , A 2 , . . . , A m } \pi = \{A_1, A_2,...,A_m\} π={A1,A2,...,Am}中的所有集合的并集与A相同, 那么就称 π \pi π为A的覆盖
- 在9的基础上如果集合族 π \pi π中的集合要么相等, 要么就交集为空(要么完全一样, 否则一点关系没有), 则称集合族 π \pi π为A的一个划分
- 一个非空集合的商集是A的划分