2018年2月28日 Wednesday QD
Works:
1.编辑器(Editor)
Sublime Text/Notepad++/word
# At first, it just like the office word.
# But, after we chose view-->syntax-->python, everything changed.
# The highlight appears.
a = "hello world"
def hello_world():
pass
2.集成开发环境(IDE(Integrated Development Environment))
PyCharm
3.REPL(Read-Evalulate-Print Loop)
Jupyter NoteBook
使用方法:
(1)打开Anaconda Prompt
(2)用命令行的方式进入Jupyther NoteBook想要工作的目录
(3)输入jupyter notebook,启动
特别注意:在使用jupyter notebook时,不要关掉已经打开的Anaconda Prompt,否则会提示失去链接。
且jupyter notebook实际操作是在本地运行的。
尽量不要同时打开两个Jupyter NoteBook,可依据网址中的数字进行区分http://localhost:8888/tree/。
关闭Jupyter可以在Anaconda Prompt中输入“Ctrl+c”。
优点:
(1)以文件的形式组织。
(2)可以运行每一块代码,并快速输出结果;而Sublime就不能直接运行,需要存成.py文件,再通过“python 文件名.py”去运行。
(3)有Markdown的功能,可以按照某种方式去排版,并且支持数学公式;从而做出一个完整的报告。
python不擅长用来开发大型的3D游戏。
程序能用来做什么:
1.软件产品开发
2.数据分析/科学计算
Approach:
训练深度神经网络需要的是原图和标记好的数据,通过调节参数,进而得到最好的网络Fbest。
应用该网络去对新的数据进行标记,得到结果。比如说:一共有5000组数据,训练网络需要4000组,而测试数据为1000组。
现在可以做到:给定图A(未染色)和图B(染色),计算出依据SIFT进行旋转后的矩阵图C(带染色的)。
想法:医生在图B上标出染色的位置,将图B上的染色区域(10个点以内,作为一个矩阵),经过SIFT算法得到的矩阵经过变换得到真正的染色矩阵,作为神经网络的输入。
------------------------------------------这是一条分割线20180306---------------------------------------------
论文共分为四章:
第一章:匹配+相对面积+界面
具体实现:应用dense SIFT找出旋转矩阵,暴力检测出牙齿和菌斑面积和位置并计算相对面积,应用MFC完成一个界面。
第二张:医生点击
具体实现:医生点击确认菌斑位置,并把该信息记录下来作为菌斑信息。
第三章:深度学习(多个channel或者一个channel的)卷积处理(CNN) 自行找一些数据
第四章:测试新的数据(数据流图等)
完成截止日期2018年5月1日,写作论文时间2018.5.1-2018.5.15,后续修改答辩。
Plans:
1.2018年(含2018年)后的每一年都至少出去旅游一次。
eg:2017年末(2018年初),黑龙江雪乡穿越(同行者:wxy,cjj,yjl,pzn)
预计2018年选项:澳门+香港;拉萨+尼泊尔。
2.作为研究Science或者Engineer的本科生,为自己家的房子装点智能家居的设备。
3.至少一篇A类的会议或者期刊。
一念疯子,一念天才。