树莓派模型部署

本文详细指导了如何在树莓派上安装Ubuntu22.04.3系统,包括使用Imager工具擦除并写入SD卡,以及后续的yolov5环境配置,如Python、OpenCV和依赖包的安装。最后演示了yolov5模型的部署过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、安装软件

首先在官网下载imager_1.8.1.exe文件  ,也可在github上找

1. 、安装imager_1.8.1.exe文件之后,ubuntu-22.04.3............,有两个包

​编辑

2. 安装完成打开后,第一步点开Raspberry Pi Device下面的框,选择RASPBERRY PI 4;第二步点开“请选择需要写入的操作系统”下面的框,选择擦除;第三步点击储存卡,选择插入在电脑上的树莓派的SD卡,Mass St..........(注意千万不要点击选择自己的盘,否则将会把自己硬盘里的东西擦除)

​编辑

完成以上操作后点击next,会出现警告“.......上所有的数据将被删除”点击是

准备写入,完成之后,可以取出SD卡(注意插入的u盘里面不能有文件)

​编辑

### 部署YOLO模型树莓派4B #### 准备工作 为了在树莓派4B上顺利部署YOLO模型,前期准备工作至关重要。这包括但不限于安装必要的软件包以及配置环境变量等操作[^1]。 #### 下载并编译OpenVINO工具套件 对于希望利用NCS2(Myriad X VPU)来加速推理过程的情况而言,在树莓派4B上部署YOLO模型前需完成对OpenVINO工具套件的下载与本地化编译。此步骤能够确保后续使用过程中硬件资源得到最大化利用,从而提高检测效率和速度。 #### 测试官方预训练模型 建议初次尝试者优先选用官方提供的预训练版本进行验证性实验。具体做法可通过执行如下Python脚本实现: ```python python3 object_detection_demo_yolov3_async.py -m /home/pi/openvino/build/pi_OpenVINO/IR_yolov3/yolov3_elecbox_model.xml -i elecbox.mp4 -d MYRIAD ``` 上述命令中的参数分别代表所使用的模型文件路径、输入视频流地址及指定计算设备类型[^2]。 #### 自定义模型转换与优化 当确认基础框架运行无误之后,则可以着手准备自训模型的相关事宜了。通常情况下,需要借助Model Optimizer将原始格式(.weights/.cfg)转化为适合目标平台加载的形式——Intermediate Representation (IR),即`.xml` 和 `.bin` 文件组合。这一环节涉及到特定API调用或CLI指令的应用。 #### NCNN库集成方案 除了基于OpenVINO的方式外,还有另一种选择就是采用轻量级神经网络推理引擎NCNN来进行跨平台移植。针对此类场景,用户应当获取对应版本的Fastest YOLO源码,并按照指示将其权重参数(`new.param`, `new.bin`)放置至相应位置以便程序读取[^3]。 #### 实际应用案例分享 最后值得一提的是,实际项目开发往往伴随着更多细节考量和技术选型决策。因此鼓励开发者们多参考社区内其他成员的经验总结,从中汲取灵感以应对可能遇到的各种挑战。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值