使用原子搜索算法优化BP神经网络实现数据预测

101 篇文章 46 订阅 ¥59.90 ¥99.00
本文介绍了如何使用原子搜索算法改进BP神经网络,解决其初始权值选择和局部极小点问题,以提高数据预测的精度和收敛速度。在Matlab中实现了这一优化过程,通过迭代更新原子群体的位置和适应度,优化神经网络权重,从而提升预测性能。
摘要由CSDN通过智能技术生成

使用原子搜索算法优化BP神经网络实现数据预测

在数据预测和模式识别领域,BP神经网络是一种常用的机器学习算法。然而,BP神经网络的性能往往受到初始权值选择和局部极小点的困扰。为了克服这些问题,可以采用一种称为原子搜索算法(Atomic Search Algorithm)的优化方法来改进BP神经网络的训练效果。

原子搜索算法是一种基于自然界中原子运动行为的启发式优化算法。它模拟了原子在空间中的运动和相互作用,通过不断迭代寻找最优解。将原子搜索算法与BP神经网络相结合,可以提高神经网络的收敛速度和预测精度。

下面是使用Matlab实现的基于原子搜索算法优化BP神经网络的数据预测代码:

% 数据准备
load('data.mat'); % 加载数据集(假设数据集已准备好,存储在data.mat文件中)
X &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值