RNN和LSTM的原理及公式
传统RNN的隐藏侧状态更新: h t = f ( U h t − 1 + W x t + b ) h_t=f(Uh_{t-1}+Wx_t+b) ht=f(Uht−1+Wxt+b),其中 x t x_t xt 是 t t t 时刻的输入。
LSTM新增了内部状态 c t c_t ct, 用来进行线性的循环信息传递,并非线性地输出信息给外部状态 h t h_t ht。
输 入 门 i t = σ ( W i x t + U i h t − 1 + b i ) 遗 忘 门 f t = σ ( W f x t + U f h t − 1 + b f ) 输 出 门 o t = σ ( W o