pytorch nn.LSTM及nn.LSTMCell的用法和理解

RNN和LSTM的原理及公式

传统RNN的隐藏侧状态更新: h t = f ( U h t − 1 + W x t + b ) h_t=f(Uh_{t-1}+Wx_t+b) ht=f(Uht1+Wxt+b),其中 x t x_t xt t t t 时刻的输入。
LSTM新增了内部状态 c t c_t ct, 用来进行线性的循环信息传递,并非线性地输出信息给外部状态 h t h_t ht
输 入 门 i t = σ ( W i x t + U i h t − 1 + b i ) 遗 忘 门 f t = σ ( W f x t + U f h t − 1 + b f ) 输 出 门 o t = σ ( W o

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值