Re53:读论文 How Can We Know What Language Models Know?

诸神缄默不语-个人CSDN博文目录
诸神缄默不语的论文阅读笔记和分类

论文名称:How Can We Know What Language Models Know?

ArXiv网址:https://arxiv.org/abs/1911.12543

官方GitHub项目(prompt之类的都有):https://github.com/jzbjyb/LPAQA

本文是2020年TACL论文,作者来自卡耐基梅隆大学和博世北美研究所。

本文关注探索LM中蕴含的知识。以前已经有工作用完形填空的方式来探查知识(Obama is a __ by profession),但是这些填空模版(prompt)都是手工做的,因此可能是sub-optimal的(在上一篇论文最后也提及了),不能充分发挥LM的能力。
本文的解决方案是自动挖掘prompt(远程监督、回译、集成)

这篇工作的实验真的多,这也太能做了。

1. 探查知识的方案

在这里插入图片描述

从数据库中获取知识是deterministic的,但从LM中获取知识(完形填空)是不可靠的。
本文用的都是双向LM,做填空题的那种。

  1. mining-based methods:远程监督:从维基百科中找三元组出现的句子。
    1. 方法一:Middle-word Prompts(subject prompt object)
    2. 方法二:Dependency-based Prompts(句法分析→subject和object之间的依存路径)
      在这里插入图片描述
      (句法分析这块我也不懂总之大概是这么个意思吧)
  2. paraphrasing-based methods:对人工或挖掘得到的种子prompt进行回译
  3. 挑选和集成prompt
    1. Top-1 Prompt Selection:选择在训练集上准确率最高的prompt(这个准确率的公式定义比较复杂,但是反正就这个prompt对应的关系里object预测正确的占所有样本的比例)
    2. Rank-based Ensemble:top-K概率求和在这里插入图片描述
    3. Optimized Ensemble:大意是说对每个关系的T个prompt分别训练权重
      在这里插入图片描述
      在这里插入图片描述

这篇paper里面还提及了BERT跟LM的标准定义严格来说不一样这一茬:
在这里插入图片描述
感觉现在已经没人在乎了=== 随便吧==

2. 实验

1. 数据集

在这里插入图片描述

2. LM

BERT-base
BERT-large

增强了外部的实体表征:
ERNIE
Know-Bert

3. baseline

  1. Majority
  2. Man:手工prompt
  3. Mine
  4. Mine+Man
  5. Mine+Para
  6. Man+Para
  7. TopK:求平均
  8. Opti.:加权平均
  9. Oracle:所有prompt中有一个能预测正确,就算LM知道这个知识

4. 实验设置

mine 40个prompts
回译7个prompts

清洗噪音prompts

Adam
batch size: 32

5. 主实验结果

评估指标:micro-averaged accuracy

在这里插入图片描述

与手工prompt相比,效果得到了提升:
在这里插入图片描述

集成权重:
在这里插入图片描述

K的选择:
在这里插入图片描述

prompt做轻微修改也能改变效果:
在这里插入图片描述

两种远程监督方案的对比:
在这里插入图片描述

不同LM的实验结果:
在这里插入图片描述

在LAMA-HUN(一个比LAMA更难的benchmark)上的表现:
在这里插入图片描述

在Google-RE上的表现:
在这里插入图片描述

6. 实验分析

Prediction Consistency by Prompt

在这里插入图片描述
divergence是两个prompt预测结果不同的程度:
在这里插入图片描述
皮尔森相关系数是0.25,说明编辑距离和divergence之间确实存在弱相关性(prompt差别越大,预测结果差别越大)

POS-based Analysis

在这里插入图片描述

在这里插入图片描述
用排名分布而不是准确率分布,在脚注解释了一下是因为不同关系的准确率的量级不同

Cross-model Consistency

检测prompts能不能跨模型通用

在这里插入图片描述

在这里插入图片描述

Linear vs. Log-linear Combination

求和的权重

在这里插入图片描述

7. 失败trick集合

这块真实诚啊

  1. LM-aware Prompt Generation
    在这里插入图片描述
  2. Forward and Backward Probabilities
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值