legalAI+文本摘要算文本摘要,legalAI+其他算legalAI。
Re后面的顺序是我写笔记的顺序,论文本身的发表顺序标在论文标题前面了。
文章目录
GNN
通用同质图节点表征
- (2018 ICLR) Re37:读论文 G2G Graph2Gauss Deep Gaussian Embedding of Graphs: Unsupervised Inductive Learning via Rank
- (2019 ICLR) Re0:读论文 PPNP/APPNP Predict then Propagate: Graph Neural Networks meet Personalized PageRank:端到端,先transform再propagate
- (2019 KDD) Re3:读论文 PGE A Representation Learning Framework for Property Graphs
- (2020 KDD) Re46:读论文 DAGNN Towards Deeper Graph Neural Networks
- (2020 ICLR) Re2: 读论文 CS-GNN Measuring and Improving the Use of Graph Information in Graph Neural Networks
- (2021 ICLR) Re1:读论文 C&S (Correct and Smooth) Combining Label Propagation and Simple Models Out-performs Graph Ne:解耦transform和propagate,再加一个correct
通用异质图节点表征
- (2017 KDD) Re31:读论文 metapath2vec: Scalable Representation Learning for Heterogeneous Networks:异质图版的node2vec
- (2020 AAAI 滴滴+北大) Re22:读论文 HetSANN An Attention-based Graph Neural Network for Heterogeneous Structural Learning
- (2021 KDD 清华) Re10:读论文 Are we really making much progress? Revisiting, benchmarking, and refining heterogeneous gr:喷了一圈各种HGNN算法,最后提出了一个简单的HGNN模型然后发现这个新模型表现最好了
同质图链路预测
- (2020 IJCAI) Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information:拓扑表征和特征表征分开建模
基础模型
RNN
LLM
- (2018 ACL) Re73 读论文:ULMFiT Universal Language Model Fine-tuning for Text Classification
- (2019 NAACL) Re63:读论文 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
- (2019 NeurIPS) Re72:读论文 XLM Cross-lingual Language Model Pretraining
- (2020 EMNLP) Re55:读论文 Entities as Experts: Sparse Memory Access with Entity Supervision:将实体表征结合到LLM中
- (2020 JMLR) Re70:读论文 T5 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
- (2022 谷歌) Re69:读论文 LaMDA: Language Models for Dialog Applications
- (2022 ICLR 谷歌) Re68:读论文 instruction tuning FLAN Finetuned Language Models Are Zero-Shot Learners
- (2023 Meta) Re75 读论文:Toolformer: Language Models Can Teach Themselves to Use Tools
GPT系
- (2018 OpenAI) Re45:读论文 GPT-1 Improving Language Understanding by Generative Pre-Training
- (2019 OpenAI) Re62:读论文 GPT-2 Language Models are Unsupervised Multitask Learners
- (2020 NeurIPS OpenAI) Re65:读论文 GPT-3 Language Models are Few-Shot Learners
- (2023) Re78 读论文:GPT-4 Technical Report
DeepSeek系
继续预训练
- (2020 ACL) Re26:读论文 Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks:继续预训练能提升下游任务表现效果
部分微调
prompt
- (2022 ACM Computing Surveys 卡耐基梅隆大学) Re33:读论文 Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Languag:prompt综述
位置编码
LM中蕴含的知识
- (2019 EMNLP) Re51:读论文 Language Models as Knowledge Bases?:完形填空
- (2020 EMNLP) Re52:读论文 How Much Knowledge Can You Pack Into the Parameters of a Language Model?:QA
- (2020 TACL) Re53:读论文 How Can We Know What Language Models Know?:完形填空,但是template是通过学习得到的
- (2023 EMNLP) Re67:读论文 Don‘t Trust ChatGPT when Your Question is not in English: A Study of Multilingual Abilities
RAG
叠实体表征那几个真的能算检索增强吗?
不过既然别人这么分类我就姑且这么算了
- (2020 ICLR 斯坦福+Facebook) Re48:读论文 kNN-LMs Generalization through Memorization: Nearest Neighbor Language Models:在语言模型计算出的token概率的基础上,增加kNN token概率
kNN概率的计算:首先构建海量文本向量数据库,key是上下文表征,value是target token。对每个测试样本,用FAISS检索得到k个最近的样本,其target token的概率与向量距离成反比(向量越近,概率越大) - (2020 ICML 谷歌) Re58:读论文 REALM: Retrieval-Augmented Language Model Pre-Training:从海量维百中检索相关文本,然后加到输入文本后面。这个检索器是端到端预训练的
- (2020 NeurIPS Facebook) Re59:读论文 Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
- (2020 AKBC) Re54:读论文 How Context Affects Language Models‘ Factual Predictions:对比了不同检索方案。其实做得挺单薄的,也就是拿TF-IDF检索维基百科的检索器加上跟监督算法比较了一下。关于seperation的实验比较有参考价值
- (2021 NAACL 谷歌) Re60:读论文 FILM Adaptable and Interpretable Neural Memory Over Symbolic Knowledge:这篇也是叠实体表征
- (2022 ICLR 谷歌) Re57:读论文 Mention Memory: incorporating textual knowledge into Transformers through entity mention at:mention memory构建语料中的mention表征向量,TOME模型在实现下游任务时结合实体mention表征向量做sparse attention
- (2023 ACL) Re49:读论文 When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parame:自适应选择少见实体加检索
- (2023 ICML) Re50:读论文 Large Language Models Struggle to Learn Long-Tail Knowledge:检索增强解决LM搞不动长尾实体的问题
- (2024 谷歌) Re74 读论文:DataGemma Knowing When to Ask - Bridging Large Language Models and Data
文本摘要
- (2017 ACL) Re47:读论文PGN/Pointer-Generator Netwoks Get To The Point:Summarization with Pointer-Generator Networks:生成概率+指针概率(抽取)
- (2018 EMNLP) Re66:读论文 Bottom-Up Abstractive Summarization
- (2019 EMNLP) Re64:读论文 BertSum Text Summarization with Pretrained Encoders & Fine-tune BERT for Extractive Summari
- (2021 AAAI) Re4:读论文 CGSum: Enhancing Scientific Papers Summarization with Citation Graph:结合文献引用关系实现文献摘要
- (2021 ACL 清华) Re5:读论文 TWAG: A Topic-guided Wikipedia Abstract Generator:结合维基百科的小标题生成摘要
- (2022 AAAI) Re12:读论文 Se3 Semantic Self-segmentation for Abstractive Summarization of Long Legal Documents in Low:分治生成摘要
- (2022 SIGIR) Re32:读论文 Summarizing Legal Regulatory Documents using Transformers
- (2022 COLING 匹兹堡大学) Re35:读论文 ArgLegalSumm: Improving Abstractive Summarization of Legal Documents with Argument Mining:识别出argumen,然后生成摘要
LegalAI
- (2020 ACL) Re23:读论文 How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence:综述
LJP
- (2017 EMNLP 北大) Re7:读论文 FLA/MLAC/FactLaw Learning to Predict Charges for Criminal Cases with Legal Basis:结合法条预测罪名
- (2019 Law in Context) Re56:读论文 A Brief History of the Changing Roles of Case Prediction in AI and Law:美国LJP传统方法综述
- (2020 ACL) Re27:读论文 LADAN Distinguish Confusing Law Articles for Legal Judgment Prediction:结合法条相似关系
- (2021 ACL) Re16:读论文 ILDC for CJPE: Indian Legal Documents Corpus for Court Judgment Prediction and Explanation
- (2021 NAACL 北大) Re18:读论文 GCI Everything Has a Cause: Leveraging Causal Inference in Legal Text Analysis
- (2021 SIGIR 北大+阿里) Re21:读论文 MSJudge Legal Judgment Prediction with Multi-Stage Case Representation Learning in the Real
- (2021 SIGIR) Re38:读论文 NeurJudge: A Circumstance-aware Neural Framework for Legal Judgment Prediction:结合犯罪情节
- (2022 AAAI) Re6:读论文 LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification fro:结合案例引用和法条层级异质图,用链路预测范式做法条预测任务
- (2022 AAAI) Re14:读论文 ILLSI Interpretable Low-Resource Legal Decision Making
- (2022 ACL 南大) Re11:读论文 EPM Legal Judgment Prediction via Event Extraction with Constraints:结合事件抽取
- (2022 IJCAI 西电) Re28:读论文 CECP Charge Prediction by Constitutive Elements Matching of Crimes:结合犯罪要素+强化学习
- (2022 IPM) Re36:读论文 CEEN Improving legal judgment prediction through reinforced criminal element extraction:结合犯罪要素+强化学习
- (2022 COLING) Re 39:读论文 CTM Augmenting Legal Judgment Prediction with Contrastive Case Relations:结合案例标签相似关系和频率
- (2022 Artificial Intelligence and Law) Re41:NumLJP Judicial knowledge‑enhanced magnitude‑aware reasoning for numerical legal judgment predi:结合数值信息
分类
文本相似性
- (2020 SIGIR) Re8:读论文 Hier-SPCNet: A Legal Statute Hierarchy-based Heterogeneous Network for Computing Legal Case:结合案例引用和法条层级异质图
案例匹配
- (2022 SIGIR 人大+华为) Re24:读论文 IOT-Match Explainable Legal Case Matching via Inverse Optimal Transport-based Rationale Ext
案例检索/推荐
- (2022 SIGIR) Re25:读论文 Lecut+JOTR Incorporating Retrieval Information into the Truncation of Ranking Lists in the
- (2022 ACM Transactions on Information Systems 清华+IBM) Re30:读论文 LegalGNN: Legal Information Enhanced Graph Neural Network for Recommendation
公平性
事件检测
信息抽取
- (2021 ACL) Re17:读论文 Challenges for Information Extraction from Dialogue in Criminal Law
- (2021 NAACL) Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court
其他
- (2021 NAACL 剑桥) Re20:读论文 What About the Precedent: An Information-Theoretic Analysis of Common Law
- (2022 SIGIR) Re34:读论文 Organizing Portuguese Legal Documents through Topic Discovery
信息抽取
意图识别+槽填充
- (2021 ACL) Re 40:读论文 GL-GIN: Fast and Accurate Non-Autoregressive Model for Joint Multiple Intent Detection and
数值推理
MWP
- (2014 EMNLP) Re42:读论文 ARIS Learning to Solve Arithmetic Word Problems with Verb Categorization:识别和分类动词
- (2017 EMNLP) Re43:读论文 DNS Deep Neural Solver for Math Word Problems:RNN+检索
- (2021 OpenAI) Re44:数据集 GSM8K 和 论文 Training Verifiers to Solve Math Word Problems:verifier
- (2024 AAAI) Re61:读论文 PRP Get an A in Math: Progressive Rectification Prompting
交叉学科
情报学
- (2022 图书情报工作) Re76 读论文:新兴技术的多指标量化识别研究——基于向量表征方法的探索