【论文阅读】SegMiF:Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image

论文链接:[2308.02097] Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation (arxiv.org)

代码:GitHub - JinyuanLiu-CV/SegMiF: ICCV2023 | Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation

Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation(ICCV2023 oral)

现有方法存在问题:

  • 大多数学习方法侧重于生成视觉吸引力的图像,而忽略高级视觉任务

  • 尝试设计多任务学习的损失函数以加强融合和高级任务之间的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值