多模态图像融合全新里程碑!性能暴涨至99.48%,效率提升4倍

强烈建议所有做图像任务的伙伴,一定不要忽略这项至关重要的技术:多模态图像融合!

它能将不同模态的信息结合,克服单一模态的图像信息量有限的问题,在提高图像处理任务的准确性和效率方面效果显著!比如新模型DeepM2CDL便实现了性能提升至99.48%的炸裂效果!而模型MACTFusion,则通过引入注意力机制,在性能提升的同时,训练速度快4倍!正是基于该方法效果卓越,各种改进层出不穷!

1.DeepMCDL: Deep Multi-Scale Multi-Modal Convolutional Dictionary Learning Network

简述:本篇论文提出了一种名为DeepMCDL的深度多尺度多模态卷积字典学习网络。该方法通过结合多尺度和多模态信息,实现了更高效和精准的特征提取与表示。具体而言,模型在不同尺度上对输入数据进行卷积处理,捕捉细节和全局特征,并融合多模态数据来增强特征的表达能力。字典学习模块则负责从这些多尺度多模态特征中提取有用的字典元素,用于进一步的分类或回归任务。实验结果表明,DeepMCDL在多个图像处理和模式识别任务中表现出色,显著提升了模型的准确性和鲁棒性,展示了其在计算机视觉和信号处理等领域的广泛应用潜力。

2.FusionMamba: Dynamic Feature Enhancement for Multimodal Image Fusion with Mamba

简述:本文提出了FusionMamba,一种创新的动态特征增强多模态图像融合方法,利用Mamba模型进行图像融合。该方法集成了高效的视觉状态空间模型与动态卷积和通道注意力,增强了局部和全局特征提取能力。设计的动态特征融合模块通过动态特征增强和跨模态融合Mamba模块,显著提升了融合图像的质量和细节。FusionMamba在多个多模态图像融合任务上取得了最先进的性能,展示了其泛化能力和实用性。

3.DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion

简述:DDFM(是一种创新的多模态图像融合方法,由西安交通大学和苏黎世联邦理工学院的研究团队在ICCV 2023上提出。该方法首次将去噪扩散概率模型(DDPM)应用于多模态图像融合领域,通过无条件生成和条件似然校正两个子问题,实现了高质量、稳定的融合图像生成。

4.MATFusion: Lightweight Cross Transformer for Adaptive Multimodal Medical Image Fusion

简述:本篇论文提出了一种名为MATFusion的轻量级跨Transformer方法,用于自适应多模态医学图像融合。MATFusion通过引入跨模态Transformer机制,实现对多种医学图像的高效融合。具体而言,模型采用轻量级Transformer架构,在不同模态的医学图像之间建立关联和信息交互,从而生成融合后的高质量图像。该方法能够自适应地调整融合策略,以最大化保留每种模态的关键特征。实验结果表明,MATFusion在多个医学图像融合任务中表现优异,显著提高了图像质量和诊断准确性,展示了其在医学影像处理中的巨大应用潜力和优势。

5.Multi-inte ractive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation

简述:本篇论文提出了一种多交互特征学习方法,并引入了一个全时多模态基准,用于图像融合和分割任务。该方法通过多模态图像之间的交互特征学习,实现更精准的图像融合和分割。具体而言,模型在训练过程中引入多层次、多模态的特征交互机制,增强对不同模态图像信息的整合和理解。全时多模态基准则提供了一个全面的测试平台,用于评估不同图像融合和分割方法的性能。实验结果表明,该方法在多个图像融合和分割任务中表现优异,显著提升了图像处理的准确性和鲁棒性,展示了其在医学影像处理、遥感图像分析等领域的广泛应用潜力和价值。

6.CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion

简述:CDDFuse 论文提出了一种用于多模态图像融合的新方法,通过结合Transformer和CNN的优势,利用双分支特征分解网络来提取并融合全局和局部特征。该方法首先使用Restormer提取跨模态浅层特征,然后通过Lite Transformer和可逆神经网络(INN)分别处理低频和高频特征,并引入相关性驱动损失以优化特征分解。实验表明,CDDFuse在红外与可见光及医学图像融合中表现出色,并提升了下游任务性能。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值