三角学常见公式定理证明

前置知识

(1)毕达哥拉斯定理: sin ⁡ 2 α + cos ⁡ 2 β = 1 \sin^2\alpha+\cos^2\beta=1 sin2α+cos2β=1

(2)诱导公式: sin ⁡ ( 2 k π + α ) = sin ⁡ α , cos ⁡ ( 2 k π + α ) = cos ⁡ α , ( k ∈ Z ) sin ⁡ ( − α ) = − sin ⁡ α , cos ⁡ ( − α ) = cos ⁡ α sin ⁡ ( π + α ) = − sin ⁡ α , cos ⁡ ( π + α ) = − cos ⁡ α \sin(2k\pi+\alpha)=\sin\alpha,\cos(2k\pi+\alpha)=\cos\alpha,(k\in Z)\\\sin(-\alpha)=-\sin\alpha,\cos(-\alpha)=\cos\alpha\\\sin(\pi+\alpha)=-\sin\alpha,\cos(\pi+\alpha)=-\cos\alpha sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,(kZ)sin(α)=sinα,cos(α)=cosαsin(π+α)=sinα,cos(π+α)=cosα

正弦定理

(1)定理:在 △ A B C \vartriangle ABC ABC a , b , c a,b,c a,b,c分别为 A , B , C A,B,C A,B,C的对边,则 a sin ⁡ A = b sin ⁡ B = c sin ⁡ C \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C} sinAa=sinBb=sinCc

(2)证明:以 A A A为原点 A B AB AB x x x轴正半轴,把 △ A B C \vartriangle ABC ABC放在平面直角坐标系上,作 A B AB AB边上的高CD,如图1avatar

∴ A ( 0 , 0 ) , B ( c , 0 ) , C ( b cos ⁡ A , b sin ⁡ A ) , D ( b cos ⁡ A , 0 ) \therefore A(0,0),B(c,0),C(b\cos A,b\sin A),D(b\cos A,0) A(0,0),B(c,0),C(bcosA,bsinA),D(bcosA,0)

∴ C D = b sin ⁡ A \therefore CD=b\sin A CD=bsinA

∴ S △ A B C = 1 2 A D ⋅ C D = 1 2 b c sin ⁡ A \therefore S\vartriangle ABC=\frac12AD\cdot CD=\frac12bc\sin A SABC=21ADCD=21bcsinA

同理 S △ A B C = 1 2 a b sin ⁡ C = 1 2 a c sin ⁡ B S\vartriangle ABC=\frac12ab\sin C=\frac12ac\sin B SABC=21absinC=21acsinB

∴ sin ⁡ A a = sin ⁡ B b = sin ⁡ C c \therefore \frac{\sin A}a=\frac{\sin B}b=\frac{\sin C}c asinA=bsinB=csinC

∴ a sin ⁡ A = b sin ⁡ B = c sin ⁡ C \therefore\frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C} sinAa=sinBb=sinCc

(2)扩充了的正弦定理: △ A B C \vartriangle ABC ABC有外接圆半径为 R R R a , b , c a,b,c a,b,c分别为 A , B , C A,B,C A,B,C的对边,则 a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R sinAa=sinBb=sinCc=2R

(3)证明:过 B B B做外接圆的直径 B D BD BD,连接 C D CD CD,如图二avatar

∴ ∠ A = ∠ D , sin ⁡ A = sin ⁡ D \therefore \angle A=\angle D,\sin A=\sin D A=D,sinA=sinD

∵ B D \because BD BD为直径

∴ ∠ D C B = 9 0 ∘ \therefore \angle DCB=90^{\circ} DCB=90

∴ sin ⁡ D = B C B D = a 2 R \therefore\sin D=\frac{BC}{BD}=\frac{a}{2R} sinD=BDBC=2Ra

∴ a sin ⁡ A = 2 R \therefore \frac a{\sin A}=2R sinAa=2R

同理 a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R \frac a{\sin A}=\frac b{\sin B}=\frac c{\sin C}=2R sinAa=sinBb=sinCc=2R

余弦定理

(1)定理: a 2 = b 2 + c 2 − 2 b c cos ⁡ A b 2 = a 2 + c 2 − 2 a c cos ⁡ B c 2 = a 2 + b 2 − 2 a b cos ⁡ C a^2=b^2+c^2-2bc\cos A\\b^2=a^2+c^2-2ac\cos B\\c^2=a^2+b^2-2ab\cos C a2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosC

(2)证明:如图一

∴ A ( 0 , 0 ) , B ( c , 0 ) , C ( b cos ⁡ A , b sin ⁡ A ) , D ( b cos ⁡ A , 0 ) \therefore A(0,0),B(c,0),C(b\cos A,b\sin A),D(b\cos A,0) A(0,0),B(c,0),C(bcosA,bsinA),D(bcosA,0)

∴ C D = b sin ⁡ A \therefore CD=b\sin A CD=bsinA

KaTeX parse error: No such environment: align* at position 7: \begin{̲a̲l̲i̲g̲n̲*̲}̲\therefore a^2&…

同理 a 2 = b 2 + c 2 − 2 b c cos ⁡ A b 2 = a 2 + c 2 − 2 a c cos ⁡ B c 2 = a 2 + b 2 − 2 a b cos ⁡ C a^2=b^2+c^2-2bc\cos A\\b^2=a^2+c^2-2ac\cos B\\c^2=a^2+b^2-2ab\cos C a2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosC

和角的余弦和正弦

(1)公式: sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β \sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\\\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβsinαsinβ

(2)证明:把角 α , β \alpha,\beta α,β,顶角放在原点,始边放在坐标系 x x x正半轴,终边分别放在 x x x轴两侧,如图三,把 B C BC BC绕原点旋转 β \beta β,如图四

avataravatar

∴ B ( cos ⁡ α , sin ⁡ α ) , C ( cos ⁡ β , − sin ⁡ β ) , B ′ ( cos ⁡   α + β , sin ⁡   α + β ) , C ′ ( 1 , 0 ) \therefore B(\cos\alpha,\sin\alpha),C(\cos\beta,-\sin\beta),B'(\cos\ \alpha+\beta,\sin\ \alpha+\beta),C'(1,0) B(cosα,sinα),C(cosβ,sinβ),B(cos α+β,sin α+β),C(1,0)

∴ B C 2 = ( cos ⁡ α − cos ⁡ β ) 2 + ( sin ⁡ α + sin ⁡ β ) 2 = 2 + 2 ( sin ⁡ α sin ⁡ β − cos ⁡ α cos ⁡ β ) B ′ C ′ 2 = [ cos ⁡ ( α + β ) − 1 ] 2 + sin ⁡ 2 ( α + β ) = 2 − 2 cos ⁡ ( α + β ) \therefore BC^2=(\cos\alpha-\cos\beta)^2+(\sin\alpha+\sin\beta)^2=2+2(\sin\alpha\sin\beta-\cos\alpha\cos\beta)\\B'C'^2=[\cos(\alpha+\beta)-1]^2+\sin^2(\alpha+\beta)=2-2\cos(\alpha+\beta) BC2=(cosαcosβ)2+(sinα+sinβ)2=2+2(sinαsinβcosαcosβ)BC2=[cos(α+β)1]2+sin2(α+β)=22cos(α+β)

∵ B C = B ′ C ′ \because BC=B'C' BC=BC

∴ B C 2 = B ′ C ′ 2 \therefore BC^2=B'C'^2 BC2=BC2

∴ cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β \therefore \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta cos(α+β)=cosαcosβsinαsinβ

∴ sin ⁡ ( α + β ) = cos ⁡ ( π − α − β ) = cos ⁡ ( π − α ) cos ⁡ β + sin ⁡ ( π − α ) sin ⁡ β = sin ⁡ α cos ⁡ β + sin ⁡ β cos ⁡ α \therefore \sin(\alpha+\beta)=\cos(\pi-\alpha-\beta)=\cos(\pi-\alpha)\cos\beta+\sin(\pi-\alpha)\sin\beta=\sin\alpha\cos\beta+\sin\beta\cos\alpha sin(α+β)=cos(παβ)=cos(πα)cosβ+sin(πα)sinβ=sinαcosβ+sinβcosα

*(3)托勒密定理与和角定理互证:

A , B , C , D A,B,C,D A,B,C,D四点共圆,有四边形 A B C D ABCD ABCD,则 A B ⋅ C D + B C ⋅ A D = A C ⋅ B D ⇔ sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β AB\cdot CD+BC\cdot AD=AC\cdot BD\Leftrightarrow\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta ABCD+BCAD=ACBDsin(α+β)=sinαcosβ+cosαsinβ

1、 A B ⋅ C D + B C ⋅ A D = A C ⋅ B D ⇒ sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β AB\cdot CD+BC\cdot AD=AC\cdot BD\Rightarrow\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta ABCD+BCAD=ACBDsin(α+β)=sinαcosβ+cosαsinβ

A , B , C , D A,B,C,D A,B,C,D四点共圆,有直径 A C AC AC,如图五avatar

∵ A C 为 圆 O 的 直 径 \because AC为圆O的直径 ACO

∴ ∠ A D C = ∠ A B C = 9 0 ∘ \therefore \angle ADC=\angle ABC=90^{\circ} ADC=ABC=90

∴ sin ⁡ α = D C A C , cos ⁡ α = A D A C , sin ⁡ β = B C A C , cos ⁡ β = A B A C \therefore \sin\alpha=\frac{DC}{AC},\cos\alpha=\frac{AD}{AC},\sin\beta=\frac{BC}{AC},\cos\beta=\frac{AB}{AC} sinα=ACDC,cosα=ACAD,sinβ=ACBC,cosβ=ACAB

∴ sin ⁡ α cos ⁡ β + c o s α sin ⁡ β = A D ⋅ B C + D C ⋅ A B A C 2 \therefore\sin\alpha\cos\beta+cos\alpha\sin\beta=\frac{AD\cdot BC+DC\cdot AB}{AC^2} sinαcosβ+cosαsinβ=AC2ADBC+DCAB

∵ A B ⋅ C D + B C ⋅ A D = A C ⋅ B D \because AB\cdot CD+BC\cdot AD=AC\cdot BD ABCD+BCAD=ACBD

∴ sin ⁡ α cos ⁡ β + c o s α sin ⁡ β = A C ⋅ B D A C 2 = B D A C \therefore\sin\alpha\cos\beta+cos\alpha\sin\beta=\frac{AC\cdot BD}{AC^2}=\frac{BD}{AC} sinαcosβ+cosαsinβ=AC2ACBD=ACBD

∵ B D sin ⁡ ( α + β ) = 2 R = A C \because\frac{BD}{\sin(\alpha+\beta)}=2R=AC sin(α+β)BD=2R=AC

∴ ∴ sin ⁡ α cos ⁡ β + c o s α sin ⁡ β = sin ⁡ ( α + β ) \therefore\therefore\sin\alpha\cos\beta+cos\alpha\sin\beta=\sin(\alpha+\beta) sinαcosβ+cosαsinβ=sin(α+β)

2、 A B ⋅ C D + B C ⋅ A D = A C ⋅ B D ⇐ sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β AB\cdot CD+BC\cdot AD=AC\cdot BD\Leftarrow\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta ABCD+BCAD=ACBDsin(α+β)=sinαcosβ+cosαsinβ

A , B , C , D A,B,C,D A,B,C,D四点共圆,如图六avatar

由正弦定理得 A B ⋅ C D + B C ⋅ A D = sin ⁡ β ⋅ 2 R ⋅ sin ⁡ α ⋅ 2 R + sin ⁡ θ ⋅ 2 R ⋅ sin ⁡ γ ⋅ 2 R A C ⋅ B D = sin ⁡ ( β + θ ) sin ⁡ ( β + γ ) AB\cdot CD+BC\cdot AD=\sin\beta\cdot2R\cdot\sin\alpha\cdot2R+\sin\theta\cdot2R\cdot\sin\gamma\cdot2R\\AC\cdot BD=\sin(\beta+\theta)\sin(\beta+\gamma) ABCD+BCAD=sinβ2Rsinα2R+sinθ2Rsinγ2RACBD=sin(β+θ)sin(β+γ)
sin ⁡ β sin ⁡ α + sin ⁡ θ sin ⁡ γ = sin ⁡ β sin ⁡ ( π − β − θ − γ ) + sin ⁡ θ sin ⁡ γ ( 诱 导 公 式 ) = sin ⁡ β sin ⁡ ( β + θ + γ ) + sin ⁡ θ sin ⁡ γ = sin ⁡ β sin ⁡ ( β + θ ) cos ⁡ γ + sin ⁡ β cos ⁡ ( β + θ ) sin ⁡ γ + sin ⁡ θ sin ⁡ γ = sin ⁡ 2 β cos ⁡ γ cos ⁡ θ + sin ⁡ β cos ⁡ β cos ⁡ γ sin ⁡ θ + sin ⁡ β sin ⁡ γ cos ⁡ β cos ⁡ θ − sin ⁡ 2 β sin ⁡ γ sin ⁡ θ + sin ⁡ θ sin ⁡ γ ( 毕 达 哥 拉 斯 定 理 ) = sin ⁡ θ sin ⁡ γ cos ⁡ 2 β + sin ⁡ 2 β cos ⁡ γ cos ⁡ θ + sin ⁡ β cos ⁡ β cos ⁡ γ sin ⁡ θ + sin ⁡ β sin ⁡ γ cos ⁡ β cos ⁡ θ ( 因 式 分 解 ) = ( cos ⁡ β sin ⁡ θ + sin ⁡ β cos ⁡ θ ) ( cos ⁡ β sin ⁡ γ + sin ⁡ β cos ⁡ γ ) ( 和 角 的 正 弦 公 式 ) = sin ⁡ ( β + θ ) sin ⁡ ( β + γ ) \sin\beta\sin\alpha+\sin\theta\sin\gamma\\=\sin\beta\sin(\pi-\beta-\theta-\gamma)+\sin\theta\sin\gamma(诱导公式)\\=\sin\beta\sin(\beta+\theta+\gamma)+\sin\theta\sin\gamma\\ =\sin\beta\sin(\beta+\theta)\cos\gamma+\sin\beta\cos(\beta+\theta)\sin\gamma+\sin\theta\sin\gamma\\=\sin^2\beta\cos\gamma\cos\theta+\sin\beta\cos\beta\cos\gamma\sin\theta+\sin\beta\sin\gamma\cos\beta\cos\theta-\sin^2\beta\sin\gamma\sin\theta+\sin\theta\sin\gamma(毕达哥拉斯定理)\\=\sin\theta\sin\gamma\cos^2\beta+\sin^2\beta\cos\gamma\cos\theta+\sin\beta\cos\beta\cos\gamma\sin\theta+\sin\beta\sin\gamma\cos\beta\cos\theta(因式分解)\\=(\cos\beta\sin\theta+\sin\beta\cos\theta)(\cos\beta\sin\gamma+\sin\beta\cos\gamma)(和角的正弦公式)\\ =\sin(\beta+\theta)\sin(\beta+\gamma) sinβsinα+sinθsinγ=sinβsin(πβθγ)+sinθsinγ=sinβsin(β+θ+γ)+sinθsinγ=sinβsin(β+θ)cosγ+sinβcos(β+θ)sinγ+sinθsinγ=sin2βcosγcosθ+sinβcosβcosγsinθ+sinβsinγcosβcosθsin2βsinγsinθ+sinθsinγ=sinθsinγcos2β+sin2βcosγcosθ+sinβcosβcosγsinθ+sinβsinγcosβcosθ=(cosβsinθ+sinβcosθ)(cosβsinγ+sinβcosγ)=sin(β+θ)sin(β+γ)
∴ A B ⋅ C D + B C ⋅ A D = A C ⋅ B D \therefore AB\cdot CD+BC\cdot AD=AC\cdot BD ABCD+BCAD=ACBD

和差化积与积化和差

(1)积化和差:
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] ( 两 角 和 的 正 弦 公 式 相 加 可 得 ) cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] ( 两 角 和 的 正 弦 公 式 相 减 可 得 ) sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] ( 两 角 和 的 余 弦 公 式 相 加 可 得 ) sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] ( 两 角 和 的 余 弦 公 式 相 减 可 得 ) \sin\alpha\cos\beta=\frac12[\sin(\alpha+\beta)+\sin(\alpha-\beta)](两角和的正弦公式相加可得)\\ \cos\alpha\sin\beta=\frac12[\sin(\alpha+\beta)-\sin(\alpha-\beta)](两角和的正弦公式相减可得)\\ \sin\alpha\sin\beta=\frac12[\cos(\alpha+\beta)+\cos(\alpha-\beta)](两角和的余弦公式相加可得)\\ \sin\alpha\sin\beta=\frac12[\cos(\alpha+\beta)-\cos(\alpha-\beta)](两角和的余弦公式相减可得) sinαcosβ=21[sin(α+β)+sin(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]sinαsinβ=21[cos(α+β)+cos(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]
(2)和差化积
令 α + β = A , α − β = B , 有 α = A + B 2 , β = A − B 2 , 代 入 积 化 和 差 得 sin ⁡ A + sin ⁡ B = 2 sin ⁡ A + B 2 cos ⁡ A − B 2 sin ⁡ A − sin ⁡ B = 2 cos ⁡ A + B 2 sin ⁡ A − B 2 cos ⁡ A + cos ⁡ B = 2 cos ⁡ A + B 2 cos ⁡ A − B 2 cos ⁡ A − cos ⁡ B = − 2 sin ⁡ A + B 2 sin ⁡ A − B 2 令\alpha+\beta=A,\alpha-\beta=B,有\alpha=\frac{A+B}2,\beta=\frac{A-B}2,代入积化和差得\\ \sin A+\sin B=2\sin\frac{A+B}2\cos\frac{A-B}2\\ \sin A-\sin B=2\cos\frac{A+B}2\sin\frac{A-B}2\\ \cos A+\cos B=2\cos\frac{A+B}2\cos\frac{A-B}2\\ \cos A-\cos B=-2\sin\frac{A+B}2\sin\frac{A-B}2\\ α+β=A,αβ=B,α=2A+B,β=2ABsinA+sinB=2sin2A+Bcos2ABsinAsinB=2cos2A+Bsin2ABcosA+cosB=2cos2A+Bcos2ABcosAcosB=2sin2A+Bsin2AB

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值