毕达哥拉斯定理(又称 勾股定理)的证明

前言

最近在拜读欧几里得的数学著作《原本》 看到命题1.47
对 毕达哥拉斯定理的证明,从几何角度上来证明,还是非常有意思的

毕达哥拉斯定理,又称勾股定理或毕氏定理。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。
毕达哥拉斯定理的定义:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

下面讲 《原本》中对毕达哥拉斯定理的证明方式
如同 老爹说的一样: ”要用魔法打败魔法“
我们也 要用几何证明几何

在证明中我们要用到如下三个辅助定理(只涉及初中数学知识):
1.全等三角形判定方法:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等.
在这里插入图片描述
2.三角形面积是其与之 同底同高的平行四边形面积的一半在这里插入图片描述

3.正方形的基本性质:
正方形的四边长度相等
正方形的面积等于其二边长的乘积(即 一边长的平方)
在这里插入图片描述

设计如下图
在这里插入图片描述
设△ABC为一直角三角形, 其中A为直角。
在△ABC各边上向外做 正方形 ABFG, ACIH,BCDE.
从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为 二,其面积分别与其余两个正方形相等。
所以正方形BCED的面积 = 长方形BDLK的面积 + 长方形KCEL的面积

我们只要证明
两个小正方形面积之和等于 大正方形的面积
即 BC² = AB² + AC² 就行了

证明开始
分别连接 CF,AD,形成两个三角形 CBF, DBA
由正方形FBAG 和 正方形BCED 可知:
FB = AB, BC = BD, 角FBA = 角CBD = 90度
角FBC = 角FBA + 角ABC,角ABD = 角CBD + 角ABC, 所以 角FBC = 角ABD
根据 三角形 全等 SAS定理
△FBC 全等于 △ABD

再根据辅助定理 :三角形面积是其与之 同底同高的平行四边形面积的一半
△FBC 同底同高的平行四边形是ABFG
△ABD 同底同高的平行四边形是BKLD
所以 正方形ABFG的面积 = 长方形BKLD的面积

再分别连接 BI,AE, 形成两个三角形 ACE,BCI
由正方形ACIH和正方形BCED 可知:
BC = CE,AC = CI,角ACI= 角BCE = 90度
角BCI= 角ACI + 角ACB, 角ACE = 角BCE + 角ACB, 所以 角BCI = 角ACE
根据三角形 全等 SAS定理
△BCI 全等于 △ACE

再根据辅助定理 :三角形面积是其与之 同底同高的平行四边形面积的一半
△BCI 同底同高的平行四边形是ACIH
△ACE 同底同高的平行四边形是KCEL
所以 正方形ACIH的面积 = 长方形KCEL的面积

因为 正方形BCED的面积 = 长方形BDLK的面积 + 长方形KCEL的面积
所以 正方形BCED的面积 = 正方形ABFG的面积 + 正方形ACIH的面积

又因为 正方形的面积等于其二边长的乘积
所以BC² = AB² + AC²
直角三角形的两条直角边的平方和等于斜边的平方

**

证讫

**

<think>嗯,用户让我用中文介绍MATLAB和勾股定理。首先,我得确认自己对这两个主题的理解是否足够全面。MATLAB是一个数学软件,主要用于数值计算、数据分析和算法开发,对吧?而勾股定理数学中的基础定理,直角三角形三边的关系。不过,用户可能希望知道它们的具体内容、应用以及可能的联系。 先想想MATLAB的介绍。应该包括它的全称Matrix Laboratory,由MathWorks公司开发,主要特点比如矩阵运算、绘图功能、工具箱等。还要提一下它在工程和科学领域的应用,比如信号处理、图像处理、控制系统设计等等。可能需要举几个例子说明MATLAB的用途,比如如何用MATLAB进行矩阵运算或者绘制图形。 然后是勾股定理。要解释定理的内容,即直角三角形的两条直角边的平方和等于斜边的平方。公式是a² + b² = c²。可能需要提到它的历史背景,比如毕达哥拉斯发现的,不过也有说法是古代中国或巴比伦早有记载。应用方面,比如测量距离、建筑设计、导航等。还可以说明在三维空间中的推广形式,比如两点之间的距离计算。 接下来考虑用户可能的深层需求。用户同时提到MATLAB和勾股定理,可能想了解如何在MATLAB中应用勾股定理?或者只是分别介绍两个概念?需要判断是否需要将两者结合起来,比如给出一个MATLAB实现勾股定理计算的例子。这样会让回答更实用,帮助用户理解如何在实际中使用MATLAB进行数学计算。 检查是否有遗漏点。比如MATLAB的编程环境、Simulink集成、支持的其他功能如机器学习、深度学习等。勾股定理证明方法,比如几何证明或者代数证明,但用户可能不需要太深入的证明,而是更关注应用。 还要注意语言要简洁明了,避免使用过于专业的术语,但也要准确。可能需要分段,先分别介绍两者,然后如果有联系的话再结合起来。比如在MATLAB中如何计算直角三角形的斜边,或者验证勾股定理的正确性。 现在组织一下结构:首先分两部分,MATLAB和勾股定理。每个部分下分点介绍,比如定义、特点、应用等。最后可以加一个结合两者的例子,用MATLAB实现勾股定理的计算,这样用户可以看到实际应用。 比如: MATLAB部分: - 定义和背景 - 主要功能和特点 - 应用领域 - 示例代码(比如简单的矩阵运算或绘图) 勾股定理部分: - 定理内容及公式 - 历史背景 - 应用场景 - 示例(计算斜边长度) 结合部分: - 在MATLAB中用勾股定理计算直角三角形的斜边,并验证结果。 这样结构清晰,内容全面。需要注意示例代码的正确性,比如输入两个直角边长度,计算斜边,并输出结果。或者绘制直角三角形图形,帮助可视化。 最后检查是否有错误,比如MATLAB的拼写是否正确,勾股定理的公式是否正确,历史背景是否准确,应用例子是否合理。确保信息准确无误,并且易于理解。</think>### MATLAB 介绍 **定义与背景** MATLAB(Matrix Laboratory)是由美国MathWorks公司开发的商用数学软件,专注于数值计算、数据分析和算法开发。其核心设计基于矩阵运算,适合处理线性代数、微分方程等数学问题。 **主要功能与特点** 1. **矩阵运算**:直接支持矩阵操作,例如矩阵乘法、求逆等。 2. **绘图与可视化**:提供丰富的绘图函数,可生成2D/3D图形、动态可视化效果。 3. **工具箱扩展**:包含数十种专业工具箱(如信号处理、图像处理、机器学习),扩展应用场景。 4. **Simulink集成**:结合Simulink模块,支持系统建模与仿真。 **应用领域** - 工程计算(控制系统设计、通信系统仿真) - 科学研究(物理建模、金融数据分析) - 人工智能(深度学习模型训练、计算机视觉) **示例代码** ```matlab % 计算矩阵乘法 A = [1, 2; 3, 4]; B = [5, 6; 7, 8]; C = A * B; % 绘制正弦曲线 x = 0:0.1:2*pi; plot(x, sin(x)); title('正弦函数波形'); ``` --- ### 勾股定理 **定理内容** 在直角三角形中,直角边的平方和等于斜边的平方,公式为: \[ a^2 + b^2 = c^2 \] 其中,\(a\)、\(b\) 为直角边,\(c\) 为斜边。 **历史背景** - 古希腊数学毕达哥拉斯(Pythagoras)提出,但古巴比伦、古中国(《周髀算经》)也有类似记载。 - 中国古称“毕达哥拉斯定理”为“商高定理”。 **应用场景** 1. **测量距离**:已知两点坐标 \((x_1,y_1)\) 和 \((x_2,y_2)\),距离 \(d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\)。 2. **三维扩展**:空间两点距离公式 \(d = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}\)。 3. **工程建造**:确保直角结构的精度(如房屋墙角、桥梁支架)。 --- ### 结合MATLAB与勾股定理的实例 **计算直角三角形斜边** ```matlab a = input('请输入直角边a的长度:'); b = input('请输入直角边b的长度:'); c = sqrt(a^2 + b^2); fprintf('斜边c的长度为:%.2f\n', c); ``` **运行结果示例** ``` 请输入直角边a的长度:3 请输入直角边b的长度:4 斜边c的长度为:5.00 ``` **可视化验证** ```matlab % 绘制直角三角形 vertices = [0,0; a,0; 0,b]; patch('Faces', [1,2,3], 'Vertices', vertices, 'FaceColor', 'yellow'); axis equal; text(a/2, 0, 'a', 'VerticalAlignment', 'top'); text(0, b/2, 'b', 'HorizontalAlignment', 'right'); text(a/2, b/2, sprintf('c=%.2f', c), 'Color', 'red'); ``` 此代码会生成一个黄色直角三角形,并标注边长,直观展示勾股定理几何意义。 --- 通过MATLAB的数值计算与图形功能,用户既能高效解决数学问题,又能直观理解定理的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

键盘侠伍十七

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值