NumPy常用方法介绍(机器学习)

本文章主要是记录自己的学习进度。

数组的创建

import numpy as np


# # 1.使用array创建
    # 通过array函数传递list对象
    # L = [1, 2, 3, 4, 5, 6]
    # # print "L = ", L
    # a = np.array(L)
    # print "a = ", a
    # # print type(a), type(L)
    # # 若传递的是多层嵌套的list,将创建多维数组
    # b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
    # print b
    # # # #
    # # # # # 数组大小可以通过其shape属性获得
    # print a.shape
    # print b.shape
    # # # #
    # # # # 也可以强制修改shape
    # # b.shape = 4, 3
    # # print b
    # # # # # 注:从(3,4)改为(4,3)并不是对数组进行转置,而只是改变每个轴的大小,数组元素在内存中的位置并没有改变
    # # # #
    # # # 当某个轴为-1时,将根据数组元素的个数自动计算此轴的长度
    # b.shape = 2, -1
    # print b
    # print b.shape
    # # # #
    # b.shape = 3, 4
    # print b
    # # # # 使用reshape方法,可以创建改变了尺寸的新数组,原数组的shape保持不变
    # c = b.reshape((4, -1))
    # print "b = \n", b
    # print 'c = \n', c
    # # #
    # # # # 数组b和c共享内存,修改任意一个将影响另外一个
    # b[0][1] = 20
    # print "b = \n", b
    # print "c = \n", c
    # # # #
    # # # # 数组的元素类型可以通过dtype属性获得
    # print a.dtype
    # print b.dtype
    # # # #
    # # # # # 可以通过dtype参数在创建时指定元素类型
    # d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.float)
    # # f = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.complex)
    # print d
    # print f
    # # #
    # # # 如果更改元素类型,可以使用astype安全的转换
    # f = d.astype(np.int)
    # print f
    # #
    # # # 但不要强制仅修改元素类型,如下面这句,将会以int来解释单精度float类型
    # d.dtype = np.int
    # print d
    #
    # 2.使用函数创建
    # 如果生成一定规则的数据,可以使用NumPy提供的专门函数
    # arange函数类似于python的range函数:指定起始值、终止值和步长来创建数组
    # 和Python的range类似,arange同样不包括终值;但arange可以生成浮点类型,而range只能是整数类型
    # a = np.arange(1, 10, 0.5)
    # print a
    # # # #
    # # # # linspace函数通过指定起始值、终止值和元素个数来创建数组,缺省包括终止值
    # b = np.linspace(1, 10, 10)
    # print 'b = ', b
    # # # #
    # # 可以通过endpoint关键字指定是否包括终值
    # c = np.linspace(1, 10, 9, endpoint=False)
    # print 'c = ', c
    # # # #
    # # # 和linspace类似,logspace可以创建等比数列
    # # 下面函数创建起始值为10^1,终止值为10^2,有10个数的等比数列
    # d = np.logspace(1, 2, 9, endpoint=True)
    # print d
    # # # #
    # # # # 下面创建起始值为2^0,终止值为2^10(包括),有10个数的等比数列
    # f = np.logspace(0, 10, 11, endpoint=True, base=2)
    # print f
    # # # #
    # # # # 使用 frombuffer, fromstring, fromfile等函数可以从字节序列创建数组
    # s = 'abcdz'
    # g = np.fromstring(s, dtype=np.int8)
    # print (g)  # [ 97  98  99 100 122]
    # #

一维数组的切片

    # 3.1常规办法:数组元素的存取方法和Python的标准方法相同
    # a = np.arange(10)
    # print (a)
    # # # 获取某个元素
    # print (a[3])
    # # # # # 切片[3,6),左闭右开
    # print (a[3:6])
    # # 省略开始下标,表示从0开始
    # print (a[:5])
    # # 下标为负表示从后向前数
    # print (a[3:])
    # # 步长为2
    # print (a[1:9:2])
    # # # # # 步长为-1,即翻转
    # print (a[::-1])
    # # # # # 切片数据是原数组的一个视图,与原数组共享内容空间,可以直接修改元素值
    # a[1:4] = 10, 20, 30
    # print (a)
    # # 因此,在实践中,切实注意原始数据是否被破坏,如:
    # b = a[2:5]
    # b[0] = 200
    # print (a)

    # 3.2 整数/布尔数组存取
    # 3.2.1
    # 根据整数数组存取:当使用整数序列对数组元素进行存取时,
    # 将使用整数序列中的每个元素作为下标,整数序列可以是列表(list)或者数组(ndarray)。
    # 使用整数序列作为下标获得的数组不和原始数组共享数据空间。
    # a = np.logspace(0, 9, 10, endpoint=True, base=2)
    # print (a)
    # i = np.arange(0, 10, 2)
    # print (i)
    # # 利用i取a中的元素
    # b = a[i]
    # print (b)
    # # b的元素更改,a中元素不受影响
    # b[2] = 1.6
    # print (b)
    # print (a)

    # # 3.2.2
    # 使用布尔数组i作为下标存取数组a中的元素:返回数组a中所有在数组b中对应下标为True的元素
    # 生成10个满足[0,1)中均匀分布的随机数
    # a = np.random.rand(10)
    # print (a)
    # # 大于0.5的元素索引
    # print (a > 0.5)
    # # 大于0.5的元素
    # b = a[a > 0.5]
    # print (b)
    # # 将原数组中大于0.5的元素截取成0.5
    # a[a > 0.5] = 0.5
    # print (a)
    # # # # b不受影响
    # print (b)

二维数组的切片

# 3.3 二维数组的切片
    # [[ 0  1  2  3  4  5]
    #  [10 11 12 13 14 15]
    #  [20 21 22 23 24 25]
    #  [30 31 32 33 34 35]
    #  [40 41 42 43 44 45]
    #  [50 51 52 53 54 55]]
    # a = np.arange(0, 60, 10)    # 行向量
    # print ('a = ', a)
    # b = a.reshape((-1, 1))      # 转换成列向量,
    # print (b)
    # c = np.arange(6)
    # print (c)
    # f = b + c   # 行 + 列
    # print (f)
    # # 合并上述代码:
    a = np.arange(0, 60, 10).reshape((-1, 1)) + np.arange(6)
    # print (a)
    # # 二维数组的切片
    # print (a[[0, 1, 2], [2, 3, 4]])
    # print (a[4, [2, 3, 4]])
    # print (a[4:, [2, 3, 4]])
    # i = np.array([True, False, True, False, False, True])
    # print (a[i])
    # print (a[i, 3])

NumPy与Python库的对比

# 4.1 numpy与Python数学库的时间比较
    # for j in np.logspace(0, 7, 10):
    #     j = int(j)
    #     x = np.linspace(0, 10, j)
    #     start = time.perf_counter()
    #     y = np.sin(x)
    #     t1 = time.perf_counter() - start
    #
    #     x = x.tolist()
    #     start = time.clock()
    #     for i, t in enumerate(x):
    #         x[i] = math.sin(t)
    #     t2 = time.clock() - start
    #     print (j, ": ", t1, t2, t2/t1)

元素去重

# 4.2 元素去重
    # 4.2.1直接使用库函数
    # a = np.array((1, 2, 3, 4, 5, 5, 7, 3, 2, 2, 8, 8))
    # print ('原始数组:', a)
    # # # 使用库函数unique
    # b = np.unique(a)
    # print ('去重后:', b)
    # # # 4.2.2 二维数组的去重,结果会是预期的么?
    # c = np.array(((1, 2), (3, 4), (5, 6), (1, 3), (3, 4), (7, 6)))
    # print (u'二维数组:\n', c)
    # print ('去重后:', np.unique(c))
    # # # 4.2.3 方案1:转换为虚数
    # # r, i = np.split(c, (1, ), axis=1)
    # # x = r + i * 1j
    # x = c[:, 0] + c[:, 1] * 1j
    # print ('转换成虚数:', x)
    # print ('虚数去重后:', np.unique(x))
    # print (np.unique(x, return_index=True))   # 思考return_index的意义
    # idx = np.unique(x, return_index=True)[1]
    # print ('二维数组去重:\n', c[idx]
    # # 4.2.3 方案2:利用set
    # print ('去重方案2:\n', np.array(list(set([tuple(t) for t in c]))))

如果拼接矩阵

# 4.3 stack and axis
    # a = np.arange(1, 10).reshape((3, 3))
    # b = np.arange(11, 20).reshape((3, 3))
    # c = np.arange(101, 110).reshape((3, 3))
    # print ('a = \n', a)
    # print ('b = \n', b)
    # print ('c = \n', c)
    # print ('axis = 0 \n', np.stack((a, b, c), axis=0))
    # print ('axis = 1 \n', np.stack((a, b, c), axis=1))
    # print ('axis = 2 \n', np.stack((a, b, c), axis=2))

    # a = np.arange(1, 10).reshape(3,3)
    # print (a)
    # b = a + 10
    # print (b)
    # print (np.dot(a, b))
    # print (a * b)

    # a = np.arange(1, 10)
    # print (a)
    # b = np.arange(20,25)
    # print (b)
    # print (np.concatenate((a, b)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值