GEE中原始数据下载

博客围绕GEE展开,介绍了原始数据下载方法,包括执行脚本、设置任务和导出路径等步骤。还阐述了对遥感图像进行辐射校正,即波段运算的过程。此外,说明了计算特定区域的ndvi值及使用掩膜显示不同区间内NDVI增减区域的操作,均通过执行JS脚本实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


GEE原始数据下载

原始数据也称为0级产品,下文介绍如何在gee中下载原始数据


  1. 原始数据下载代码
// 加载一个lansat的图像并且选择三个波段
var landsat= ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_123032_20140515')
.select(['B4', 'B3', 'B2']);
// 创建一个可以表示下载区域的多边形区域
var geometry = ee.Geometry.Rectangle([116.2621, 39.8412, 116.4849, 40.01236]);
//设置导出图像的配置信息并将图像导出到Google drive中
Export.image.toDrive
({
image: landsat,
description: 'image To Drive Example',
scale: 30,
region: geometry
});

  1. 单击Run按钮执行该脚本代码

在这里插入图片描述


  1. 前往task执行该任务,并设置好task name以及所需导出Google drive的存储路径

在这里插入图片描述
在这里插入图片描述


  1. 前往Google drive下载所导出的影像数据

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


GEE对遥感图像进行辐射校正

辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。辐射定标的本质是波段运算,即y = ax+b,下文介绍如何在gee中进行波段运算


  1. 对LANDSAT北京区域数据进行辐射定标
var geometry = ee.Geometry.Rectangle([116.2621, 39.8412, 116.4849, 40.01236]);

var landsat= ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_123032_20140515')
.select(['B4', 'B3', 'B2']).clip(geometry);

var rad2 = landsat.select('B2').multiply(3.420).add(0.1)

Map.centerObject(rad2)

Map.addLayer(rad2)

  1. 在网页编辑器内输入如下JS脚本程序并单击Run按钮执行该脚本得到处理后的图像

在这里插入图片描述

在这里插入图片描述


GEE计算特定区域的ndvi值

  1. NDVI计算代码
// 本函数用于计算landsat8的归一化植被指数
var NDVI = function(image) {
  return image.normalizedDifference(['B5', 'B4']);
};

// 加载landsat8的原始数据并对其进行地理区域过滤和时间过滤
var collection = ee.ImageCollection('LANDSAT/LC08/C01/T1')
  .filterBounds(ee.Geometry.Point(-122.262, 37.8719))
  .filterDate('2014-06-01', '2014-10-01');

// 使用 NDVI 函数对collection进行修饰
var ndvi = collection.map(NDVI);

Map.centerObject(ndvi)

Map.addLayer(ndvi)

  1. 控制台单击Run按钮后运行NDVI计算脚本
    在这里插入图片描述

使用掩膜来显示不同区间内NDVI增加和减少的区域

  1. 计算代码
// 使用Landsat 5的图像计算NDVI
var getNDVI = function(image) {
  return image.normalizedDifference(['B4', 'B3']);
};

// 加载间隔20年的Landsat 5图像数据
var image1 = ee.Image('LANDSAT/LT05/C01/T1_TOA/LT05_044034_19900604');
var image2 = ee.Image('LANDSAT/LT05/C01/T1_TOA/LT05_044034_20100611');

// 计算NDVI
var ndvi1 = getNDVI(image1);
var ndvi2 = getNDVI(image2);

// 计算NDVI的差值
var ndviDifference = ndvi2.subtract(ndvi1);
// 从 SRTM DEM加载掩膜
var landMask = ee.Image('CGIAR/SRTM90_V4').mask();

// 用陆地掩膜更新NDVI掩膜
var maskedDifference = ndviDifference.updateMask(landMask);

// 展示结果
var vizParams = {min: -0.5, max: 0.5, palette: ['FF0000', 'FFFFFF', '0000FF']};
Map.centerObject(maskedDifference)
Map.addLayer(maskedDifference, vizParams, 'NDVI difference');

  1. 单击Run执行该脚本

在这里插入图片描述


### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值