3、反向传播

(1)反向传播主要是通过loss构建计算图,在计算图上进行梯度传播,每调用一次loss函数,动态的构建一次计算图

(2)线性模型计算图:

Forward:从input到loss

Backward:从loss到x

(3)代码说明:

Tensor(可存向量、矩阵、标量)

Tensor中的成员:data存权重的值,grad存损失函数对权重的导数

grad也是一个Tensor

(4)线性模型y=w*x ,用pytorch实现反向传播代码如下:

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w = torch.Tensor([1.0])
#需要计算梯度,默认不需要
w.requires_grad = True

#w是Tensor,x自动进行类型转换
def forward(x):
    return x * w

#构建计算图
def loss(x , y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print('Predict (before training)', 4, forward(4))

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print('\tgrad:', x, y, w.grad.item())
        #grad也是一个Tensor
        w.data = w.data - 0.01 * w.grad.data
        w.grad.data.zero_()

    print('progress:', epoch, l.item())
print('Predict (after training)', 4, forward(4))

根据反向传播预测权重,最终的输出结果为:

(5) y=w1*x*x+w2*x+b,用pytorch实现反向传播代码如下:

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

w1 = torch.Tensor([1.0])
w1.requires_grad = True
w2 = torch.Tensor([1.0])
w2.requires_grad = True
b = torch.Tensor([1.0])
b.requires_grad = True

def forward(x):
    return x * x * w1 + x * w2 + b

#构建计算图
def loss(x , y):
    y_pred = forward(x)
    return (y_pred - y) ** 2

print('Predict (before training)', 4, forward(4))

for epoch in range(100):
    for x, y in zip(x_data, y_data):
        l = loss(x, y)
        l.backward()
        print('\tgrad:', x, y, w1.grad.item(), w2.grad.item(), b.grad.item())
        w1.data = w1.data - 0.01 * w1.grad.data
        w1.grad.data.zero_()
        w2.data = w2.data - 0.01 * w2.grad.data
        w2.grad.data.zero_()
        b.data = b.data - 0.01 * b.grad.data
        b.grad.data.zero_()

    print('progress:', epoch, l.item())
print('Predict (after training)', 4, forward(4))

根据反向传播预测权重和偏置,最终的输出结果为:

 根据输出结果可以分析出这个模型不适用于这组数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值