消费集与偏好关系
消费集
消费集代表所有的消费计划的集合,不管这些消费计划能否实现。
记
X
=
R
+
n
X = R^n_+
X=R+n 为消费集,其中
n
n
n 表示你想要的物品的种类。
每一个消费计划以
x
=
(
x
1
,
x
2
,
…
,
x
n
)
∈
R
+
n
x = \left(x_1,x_2,\dots,x_n \right) \in R^n_+
x=(x1,x2,…,xn)∈R+n 代表,
x
i
x_i
xi 代表对物品
i
i
i 的计划消费量。
消费集至少满足以下性质:
(1)
∅
≠
X
⊆
R
+
n
\emptyset \neq X \subseteq R^n_+
∅=X⊆R+n。
(2)
X
X
X 为闭集。即消费集中所有的极限点都包含在该集内,因此
X
X
X 是连续的。
(3)
X
X
X 为凸。凸的含义是:如
x
1
=
(
x
1
1
,
x
2
1
,
…
,
x
n
1
)
∈
X
x^1=\left(x_1^1, x_2^1,\dots,x_n^1 \right)\in X
x1=(x11,x21,…,xn1)∈X,
x
2
=
(
x
1
2
,
x
2
2
,
…
,
x
n
2
)
∈
X
x^2=\left(x_1^2,x_2^2,\dots,x_n^2 \right)\in X
x2=(x12,x22,…,xn2)∈X,则
∀
0
≤
λ
≤
1
\forall 0\leq \lambda \leq 1
∀0≤λ≤1,
λ
x
1
+
(
1
−
λ
)
x
2
∈
X
\lambda x^1+(1-\lambda)x^2\in X
λx1+(1−λ)x2∈X。即一个消费集中的任意两个消费计划的任意的线性组合仍包含在该消费集内。
(4)
0
∈
X
0 \in X
0∈X。可以选择不消费。
偏好(Preference)及其表述
偏好描述消费者对不同消费组合喜欢程度的判断,是指消费者按照他们的愿望对消费束的排列。
比较两个不同的消费束 X = ( x 1 , x 2 ) X=(x_1,x_2) X=(x1,x2) 和 Y = ( y 1 , y 2 ) Y=(y_1,y_2) Y=(y1,y2):
- 严格偏好:消费束 X X X 严格比消费束 Y Y Y 好,表示为 X ≻ Y X \succ Y X≻Y,读作—— X X X 严格偏好于 Y Y Y。
- 无差异:两个消费束没有差异,表示为 X ∼ Y X \sim Y X∼Y,读作—— X X X 与 Y Y Y 无差异。
- 弱偏好:消费束 X X X 至少与消费束 Y Y Y 一样好,表示为 X ⪰ Y X \succeq Y X⪰Y,读作—— X X X 弱偏好于 Y Y Y。
消费者偏好的三个公理(理性假设)
公
理
1
:
完
备
性
。
{\color{orange}公理1:完备性。}
公理1:完备性。任何两个消费束都是可以比较的,消费者可以对任意两个消费束做出偏好判断。
(
x
1
,
x
2
)
⪰
(
y
1
,
y
2
)
或
(
y
1
,
y
2
)
⪰
(
x
1
,
x
2
)
(x_1,x_2) \succeq (y_1, y_2) \text{ 或 } (y_1,y_2) \succeq (x_1,x_2)
(x1,x2)⪰(y1,y2) 或 (y1,y2)⪰(x1,x2)
公
理
2
:
反
身
性
。
{\color{orange}公理2:反身性。}
公理2:反身性。任何消费束至少与其自身一样好,或者说相同的消费束对消费者来说是无差异的。
(
x
1
,
x
2
)
⪰
(
x
1
,
x
2
)
(x_1,x_2) \succeq (x_1,x_2)
(x1,x2)⪰(x1,x2)
公
理
3
:
传
递
性
。
{\color{orange}公理3:传递性。}
公理3:传递性。假如消费者认为
X
X
X 至少与
Y
Y
Y 一样好,
Y
Y
Y 至少和
Z
Z
Z 一样好,那么消费者就认为
X
X
X 至少与
Z
Z
Z 一样好。
(
x
1
,
x
2
)
⪰
(
y
1
,
y
2
)
(
y
1
,
y
2
)
⪰
(
z
1
,
z
2
)
}
(
x
1
,
x
2
)
⪰
(
z
1
,
z
2
)
\left. \begin{matrix} (x_1, x_2) \succeq (y_1,y_2) \\ (y_1,y_2)\succeq (z_1,z_2) \end{matrix}\right\} (x_1,x_2)\succeq(z_1,z_2)
(x1,x2)⪰(y1,y2)(y1,y2)⪰(z1,z2)}(x1,x2)⪰(z1,z2)
无差异曲线
无差异曲线,也称无差异集,用于描述偏好。
用某个消费束
(
x
1
,
x
2
)
(x_1,x_2)
(x1,x2),把其他和
(
x
1
,
x
2
)
(x_1,x_2)
(x1,x2) 对消费者来说都是无差异的消费束,组成的曲线就称为无差异曲线。
如下图所示:
消费者理性偏好的性质
单调性
消费者希望对于好的(值得拥有的)商品,总是越多越好。
对于非有害品,有好于无,多好于少。即给定
X
=
(
X
1
,
X
2
,
…
,
X
n
)
X=(X_1,X_2,\dots,X_n)
X=(X1,X2,…,Xn) 和
Y
=
(
Y
1
,
Y
2
,
…
,
Y
n
)
Y=(Y_1,Y_2,\dots,Y_n)
Y=(Y1,Y2,…,Yn),如果
X
i
=
Y
i
X_i=Y_i
Xi=Yi,但
X
j
>
Y
j
X_j > Y_j
Xj>Yj(
i
,
j
=
1
,
2
,
…
,
n
i, j=1,2,\dots,n
i,j=1,2,…,n,
i
≠
j
i\neq j
i=j),则必有
X
≻
Y
X \succ Y
X≻Y。
良好性状偏好——凸性
凸性假设是说消费者认为平均消费束比极端消费束更好。
也就是说,对两个消费束
(
x
1
,
x
2
)
∼
(
y
1
,
y
2
)
(x_1,x_2) \sim (y_1,y_2)
(x1,x2)∼(y1,y2),求其加权平均数构成一个新的消费束
[
t
x
1
+
(
1
−
t
)
y
1
,
t
x
2
+
(
1
−
t
)
y
2
]
[tx_1+(1-t)y_1, tx_2+(1-t)y_2]
[tx1+(1−t)y1,tx2+(1−t)y2],其中
t
∈
[
0
,
1
]
t\in[0,1]
t∈[0,1],这一消费束弱偏好于原来的任一消费束,即
[
t
x
1
+
(
1
−
t
)
y
1
,
t
x
2
+
(
1
−
t
)
y
2
]
⪰
(
x
1
,
x
2
)
or
(
y
1
,
y
2
)
[tx_1+(1-t)y_1, tx_2+(1-t)y_2] \succeq (x_1,x_2) \text{ or } (y_1,y_2)
[tx1+(1−t)y1,tx2+(1−t)y2]⪰(x1,x2) or (y1,y2)
如下图所示:
边际替代率
无差异曲线说明,为维持消费者满足水平不变,增加(或减少)一单位的某种商品,必须减少(或增加)相应数量的另一种商品,边际替代率反映了这一替代比率。
定义:维持满足水平不变时,消费者愿意用一单位的商品
x
1
x_1
x1 替换商品
x
2
x_2
x2 的数量称为
x
1
x_1
x1 对
x
2
x_2
x2 的边际替代率,数学表示为:
M
R
S
1
,
2
=
Δ
x
2
Δ
x
1
MRS_{1,2} = \frac{\Delta x_2}{\Delta x_1}
MRS1,2=Δx1Δx2
若
x
1
x_1
x1 和
x
2
x_2
x2 都是可以无限细分的商品,则有
M
R
S
1
,
2
=
d
x
2
d
x
1
MRS_{1,2} = \frac{dx_2}{dx_1}
MRS1,2=dx1dx2
即边际替代率就是无差异曲线斜率。
参考
- 课程老师的PPT,这里就不外传了。