可数集与不可数集

本文探讨了集合论的基础概念,包括集合的基数、有限集和无限集。通过实例解释了正整数集与正偶数集的基数相等,展示了即使无限集也可能存在相等基数的情况。同时介绍了可数集和不可数集的定义,强调了可数集在数轴上的‘长度’为0这一特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

这篇博客是学习这本书记下的笔记。


1. 集合的基数

集合 A A A 的元素数量称为其基数或者,记为 ∣ A ∣ \lvert A \rvert A
例如:
A = { 1 , 3 , 5 , 7 } . A = \left\{1,3,5,7 \right\}. A={1,3,5,7}.
因为 A A A 中元素的个数为 4,因此 A A A 的基数为 ∣ A ∣ = 4 \lvert A \rvert=4 A=4


2. 有限集

基数为有限值的集合称为有限集
有限集 A A A B B B,它们的基数之间的关系,可能是下列之一:
∣ A ∣ < ∣ B ∣ , ∣ A ∣ = ∣ B ∣ , ∣ A ∣ > ∣ B ∣ . \lvert A \rvert < \lvert B \rvert, \qquad \lvert A \rvert = \lvert B \rvert , \qquad \lvert A \rvert > \lvert B \rvert. A<B,A=B,A>B.

特别地,若 A A A B B B 的子集( A ⊂ B A \subset B AB),则 ∣ A ∣ ≤ ∣ B ∣ \lvert A \rvert \leq \lvert B \rvert AB;若 A A A B B B 的真子集( A ⊆ B A \subseteq B AB),则 ∣ A ∣ < ∣ B ∣ \lvert A \rvert < \lvert B \rvert A<B


3. 无限集

基数为无限值的集合称为无限集

(有趣!!!) 考虑下面一个问题:正整数集 N + \mathbb{N}^+ N+,令集合 A 1 A_1 A1 为所有正奇数组成的集合,集合 A 2 A_2 A2 为所有正偶数组成的集合。
N + = A 1 ∪ A 2 , A 1 ⊂ N + , A 2 ⊂ N + , \mathbb{N}^+ = A_1 \cup A_2, \\ A_1 \subset \mathbb{N}^+, \\ A_2 \subset \mathbb{N}^+, \\ N+=A1A2,A1N+,A2N+,
那么,是否有 ∣ A 2 ∣ < ∣ N + ∣ \lvert A_2 \rvert < \lvert \mathbb{N}^+ \rvert A2<N+

错误思考:

正整数包含正奇数和正偶数, A 2 A_2 A2 中的所有数都在 N + \mathbb{N}^+ N+ 中,且 N + \mathbb{N}^+ N+ A 2 A_2 A2 多出正奇数集 A 1 A_1 A1。因此 N + \mathbb{N}^+ N+ 中的数比 A 2 A_2 A2 中的数多,也就是有 ∣ A 2 ∣ < ∣ N + ∣ \lvert A_2 \rvert < \lvert \mathbb{N}^+ \rvert A2<N+

正确思考:

i ∈ N + i \in \mathbb{N}^+ iN+ 2 i 2i 2i A 2 A_2 A2
1(第 1 个元素)1 * 2 = 22(第 1 个元素)
2(第 2 个元素)2 * 2 = 44(第 2 个元素)
3 (第 3 个元素)3 * 2 = 66(第 3 个元素)
… \dots … \dots … \dots
t t t(第 t t t 个元素) t ∗ 2 = 2 t t * 2 = 2t t2=2t 2 t 2t 2t(第 t t t 个元素)
… \dots … \dots … \dots

集合 N + \mathbb{N}^+ N+ 中的任意元素 i i i,都有 A 2 A_2 A2 中的元素 2 i 2i 2i 与之对应。因此
∣ A 2 ∣ = ∣ N + ∣ . \lvert A_2 \rvert = \lvert \mathbb{N}^+ \rvert. A2=N+.
同理

i ∈ A 1 i \in A_1 iA1 i + 1 i + 1 i+1 A 2 A_2 A2
1(第 1 个元素)1 + 1 = 22(第 1 个元素)
3(第 2 个元素)3 + 1 = 44(第 2 个元素)
5 (第 3 个元素)5 + 1 = 66(第 3 个元素)
… \dots … \dots … \dots
2 t − 1 2t-1 2t1(第 t t t 个元素) ( 2 t − 1 ) + 1 = 2 t (2t-1) + 1=2t (2t1)+1=2t 2 t 2t 2t(第 t t t 个元素)
… \dots … \dots … \dots

集合 A 1 A_1 A1 中的任意元素 i i i,都有 A 2 A_2 A2 中的元素 i + 1 i+1 i+1 与之对应。因此
∣ A 1 ∣ = ∣ A 2 ∣ . \lvert A_1 \rvert = \lvert A_2 \rvert. A1=A2.

*定义:
对于集合 A A A B B B,如果集合 A A A 中的任意元素 a a a,在集合 B B B 中都有唯一的元素 b b b 通过某种映射关系与之对应,即存在如下的双射函数(一对一函数)
b = f ( a ) , a ∈ A , b ∈ B , b = f(a), \quad a \in A, b\in B, b=f(a),aA,bB,
则称这两个集合的基数相等。

这样,也就有了上面思考问题得到的结论。
i → 2 i , i ∈ N + , 2 i ∈ A 2 , i \rightarrow 2i, \quad i \in \mathbb{N}^+, 2i \in A_2, i2i,iN+,2iA2,
正整数集 N + \mathbb{N}^+ N+ 和正偶数集 A 2 A_2 A2 基数相等。
i → i + 1 , i ∈ A 1 , i + 1 ∈ A 2 , i \rightarrow i+1, \quad i \in A_1, i+1\in A_2, ii+1,iA1,i+1A2,
正奇数集 A 1 A_1 A1 和正偶数集 A 2 A_2 A2 基数相等。


4. 可数集与不可数集

*定义
如果存在从正整数集 N + \mathbb{N}^+ N+ 到集合 A A A 的双射关系
f : N + → A f : \mathbb{N}^+ \rightarrow A f:N+A
则集合 A A A 是可数的。

  • 任意可数集在数轴上的 “长度” 都为 0。
  • 不可数集在数轴上的 “长度” 大于 0。

参考

  1. 雷明. 机器学习的数学(Mathematics of Machine Learning). 人民邮电出版社. ISBN 978-7-115-54293-96. 第 1.1.1 节 可数集与不可数集
  2. Wikipedia: Subset.
  3. 百度百科: 子集.
  4. 百度百科: 真子集.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值