1 精密度
精密度(precision):
(1)含义:反映了随机误差大小的程度。
(2)说明:
- 可以通过增加试验次数而达到提高数据精密度的目的。
- 试验数据的精密度是建立在数据用途基础之上的。
- 试验过程足够精密,则只需少量几次试验就能满足要求。
(3)精密度判断
- 极差(range):
R = x max − x min . R = x_{\max} - x_{\min}. R=xmax−xmin.
R ↓ R \bm{\downarrow} R↓,精密度 ↑ \bm{\uparrow} ↑。 - 标准差(standard error):
σ = ∑ i = 1 n ( x i − x ˉ ) 2 n = ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 / n n , \sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{\sum_{i=1}^{n}x_i^2 - (\sum_{i=1}^{n} x_i)^2 / n}{n}}, σ=n∑i=1n(xi−xˉ)2=n∑i=1nxi2−(∑i=1nxi)2/n,
s = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 = ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 / n n − 1 . s = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n}x_i^2-(\sum_{i=1}^{n}x_i)^2/n}{n-1}}. s=n−1∑i=1n(xi−xˉ)2=n−1∑i=1nxi2−(∑i=1nxi)2/n.
标准差 ↓ \bm{\downarrow} ↓,精密度 ↑ \bm{\uparrow} ↑。 - 方差(variance):
总体方差( σ 2 \sigma^2 σ2),样本方差( s 2 s^2 s2)。方差 ↓ \bm{\downarrow} ↓,精密度 ↑ \bm{\uparrow} ↑。
2 正确度
正确度(correctness):
(1)含义:反映系统误差的大小。
(2)正确度与精密度的关系:
-
落在小圆圈中的点才是正确的。
-
图(a)中精密度高(聚集),正确度最差(没落到小圆圈中)。图(b)精密度差(分散),正确度一般。图(c)精密度高,正确度最高。
-
精密度高并不意味着正确度也高。
-
精密度不好,但当试验次数相当多时,有时也会得到好的正确度。
3 准确度
准确度(accuracy):
(1)含义:
- 反映了系统误差和随机误差的综合。
- 表示了试验结果与真值的一致程度。
(2)三者关系:
-
无系统误差的试验
在无系统误差存在的试验中,极限平均值等于真值。没有系统误差,所以正确度 A = B = C A = B = C A=B=C。方差 A < B < C A < B < C A<B<C,所以精密度 A > B > C A > B > C A>B>C;准确度 A > B > C A > B > C A>B>C。 -
有系统误差的试验
在有系统误差存在的试验中,极限平均值不等于真值。因为存在系统误差,在相等系统误差的前提下(正确度 A ′ = B ′ = C ′ A' = B' = C' A′=B′=C′),精密度 A ′ > B ′ > C ′ A' > B' > C' A′>B′>C′,准确度 A ′ > B ′ > C ′ A ' > B' > C' A′>B′>C′ 且 A ′ > B , C A' > B, C A′>B,C。
【参考】
- 课程老师的 PPT。
【修改记录】
时间 | 内容 |
---|