试验数据的精准度

1 精密度

精密度(precision)
(1)含义:反映了随机误差大小的程度。
(2)说明:

  • 可以通过增加试验次数而达到提高数据精密度的目的。
  • 试验数据的精密度是建立在数据用途基础之上的。
  • 试验过程足够精密,则只需少量几次试验就能满足要求。

(3)精密度判断

  • 极差(range)
    R = x max ⁡ − x min ⁡ . R = x_{\max} - x_{\min}. R=xmaxxmin.
    R ↓ R \bm{\downarrow} R,精密度 ↑ \bm{\uparrow}
  • 标准差(standard error)
    σ = ∑ i = 1 n ( x i − x ˉ ) 2 n = ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 / n n , \sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{\sum_{i=1}^{n}x_i^2 - (\sum_{i=1}^{n} x_i)^2 / n}{n}}, σ=ni=1n(xixˉ)2 =ni=1nxi2(i=1nxi)2/n ,
    s = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 = ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 / n n − 1 . s = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{\sum_{i=1}^{n}x_i^2-(\sum_{i=1}^{n}x_i)^2/n}{n-1}}. s=n1i=1n(xixˉ)2 =n1i=1nxi2(i=1nxi)2/n .
    标准差 ↓ \bm{\downarrow} ,精密度 ↑ \bm{\uparrow}
  • 方差(variance)
    总体方差( σ 2 \sigma^2 σ2),样本方差( s 2 s^2 s2)。方差 ↓ \bm{\downarrow} ,精密度 ↑ \bm{\uparrow}

2 正确度

正确度(correctness)
(1)含义:反映系统误差的大小。
(2)正确度与精密度的关系:

  • 落在小圆圈中的点才是正确的。
    在这里插入图片描述

  • 图(a)中精密度高(聚集),正确度最差(没落到小圆圈中)。图(b)精密度差(分散),正确度一般。图(c)精密度高,正确度最高。

  • 精密度高并不意味着正确度也高。

  • 精密度不好,但当试验次数相当多时,有时也会得到好的正确度。

3 准确度

准确度(accuracy)
(1)含义:

  • 反映了系统误差和随机误差的综合。
  • 表示了试验结果与真值的一致程度。

(2)三者关系:

  • 无系统误差的试验
    在这里插入图片描述
    在无系统误差存在的试验中,极限平均值等于真值。没有系统误差,所以正确度 A = B = C A = B = C A=B=C。方差 A < B < C A < B < C A<B<C,所以精密度 A > B > C A > B > C A>B>C;准确度 A > B > C A > B > C A>B>C

  • 有系统误差的试验
    在这里插入图片描述
    在有系统误差存在的试验中,极限平均值不等于真值。因为存在系统误差,在相等系统误差的前提下(正确度 A ′ = B ′ = C ′ A' = B' = C' A=B=C),精密度 A ′ > B ′ > C ′ A' > B' > C' A>B>C,准确度 A ′ > B ′ > C ′ A ' > B' > C' A>B>C A ′ > B , C A' > B, C A>B,C


【参考】

  1. 课程老师的 PPT。

【修改记录】

时间内容
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值