AI大模型核心岗位!深入解析Prompt工程师(PE)零基础入门到精通,收藏这一篇就够了

Prompt设计(Prompt Engineering, PE)是现代人工智能特别是大语言模型(LLM)中的关键技术。以_在不_更新模型权重的情况下引导其行为以实现所需结果的方法。这是一门经验科学,PE的效果在不同模型之间可能存在很大差异,因此需要大量的实验和启发式方法。

一、 什么是Prompt设计?

Prompt设计,通常被简称为PE,是一种通过精心设计输入提示来引导大语言模型生成预期输出的技术。Prompt可以是一个简单的指令,也可以是复杂的情景描述,其目的是让AI模型根据给定的输入产生符合预期的输出。Prompt设计在近年来成为一门显著的实证科学,它不仅仅是对模型进行微调的一部分,更是影响模型生成质量的重要手段。

PE 的重要性在于它能够使模型在不同的应用场景中表现出色。无论是文本生成、对话系统、信息提取还是数据分类,通过优化Prompt,AI训练师能够显著提高模型的表现,使其更好地理解和回应用户的需求。

**二、**PE的作用

Prompt设计的核心作用在于引导AI模型生成准确且有用的输出。具体作用包括:

  • 提升模型精度:通过优化Prompt,能够减少模型输出的误差,提升模型对任务的理解能力。

  • 增加模型的适用性:不同的任务需要不同类型的Prompt,PE可以根据任务的特殊需求设计适合的提示,从而提升模型的适应性。

  • 减少模型偏差:适当的Prompt设计能够引导模型远离常见的偏见或错误,生成更加客观和中立的结果。

  • 增强用户体验:用户在与AI模型互动时,Prompt设计得当能够使用户体验更加顺畅,提升交互的质量。

例如,在自然语言处理中,Prompt的设计直接影响模型生成内容的质量。如果Prompt设计不当,模型可能会生成无关或不准确的内容;而一个精心设计的Prompt则能够引导模型生成符合用户意图的文本。

三、 PE的工作原理

Prompt设计的工作原理可以理解为通过输入信息的结构化和优化来影响模型的内部推理过程。大多数生成式模型,如GPT-4、BERT等,依赖于给定的上下文来生成后续的内容。Prompt通过设置明确的输入语境,帮助模型理解任务的需求,从而在生成过程中更好地匹配目标输出。

具体来说,Prompt设计的工作原理可以分为以下几个步骤:

**1.输入定义:**明确任务目标,并设计初始的Prompt输入。这个输入可以是一个问题、一段文本或者一个场景描述。

**2.模型生成:**模型接收Prompt后,根据其训练过程中学到的知识生成相应的输出。

**3.输出评估与调整:**通过对生成内容的评估,训练师可以识别出哪里需要调整并改进Prompt。

**4.迭代优化:**在评估之后,对Prompt进行迭代修改,直到模型输出符合预期。

举例来说,假设我们希望模型生成一段关于“未来AI技术发展的预测”的文本。初始Prompt可能是“请预测未来5年AI技术的主要发展方向。” 如果生成的内容偏离预期,可以通过迭代改进Prompt,例如增加具体领域或时间框架,以得到更精准的输出。

四、PE常用原则

在实际的Prompt设计中,AI训练师需要遵循一些基本的设计原则,这些原则可以帮助优化Prompt,提升模型的输出质量。以下是一些常用的Prompt设计原则:

**1.意图表达明确、清晰:**Prompt中的语言表达应该明确具体,避免使用模糊的词汇和不清晰的指令。明确的Prompt能帮助模型更好地理解任务的意图。

**案例:**在为客户设计一个问答系统时,客户要求模型能够回答关于产品功能的问题。初始Prompt为:“请解释产品功能。”生成的回答太过宽泛且不够精准。改进后的Prompt为:“请详细解释本产品在音频播放和电池续航方面的主要功能。”经过修改后的Prompt引导模型生成了更具针对性、详细且符合客户需求的回答。

**2.简洁的语言:**保持Prompt简洁明了,减少不必要的冗长描述。简洁的Prompt不仅能提高生成效率,还能避免模型在处理过多信息时的困惑。

**案例:**设计一个模型来生成每日天气报告的摘要。初始Prompt为:“请为下周的天气情况提供一个详细的报告,涵盖所有可能的天气现象和预警信息,并确保内容详细且全面。”结果,生成的文本过于冗长,且信息密度不高。简化后的Prompt改为:“请简明扼要地总结明日的天气情况。”结果生成的内容更加精炼,信息传达也更为有效。

**3.上下文关联性:**设计Prompt时,要确保提示与任务的上下文密切相关。上下文关联性强的Prompt可以帮助模型更好地掌握语境,从而生成更为准确的内容。

**案例:**在法律咨询系统中,初始Prompt是:“请解释合同违约的法律后果。”模型生成了泛泛的法律知识,而非与具体案件相关的内容。通过加入背景信息:“在这份租赁合同中,若承租方提前终止合同,违约金如何计算?”使生成的答案更加符合具体场景的需求。

**4.多样性与灵活性:**为相似任务设计不同的Prompt,以避免模型生成单一化的输出。灵活应用多样化Prompt有助于提高模型的泛化能力。

**案例:**在情感分析任务中,初始Prompt是:“请判断这条评论的情感。”模型过度依赖显性情感词汇,忽略了隐藏情感。改进后的Prompt增加了多种示例,如“请判断以下三条评论的情感,并解释每条评论中情感的表达方式。”这帮助模型更全面地理解情感表达,提升了分析的准确性。

**5.逐步引导:**对于复杂任务,分解为多个简单的步骤,通过逐步引导的方式帮助模型逐步推导出最终的答案。这种方法特别适用于复杂的推理任务。

**案例:**在复杂推理任务中,最初的Prompt是:“请解决这个数学问题。”模型给出的答案不正确。通过改用“首先解决以下问题,然后将其结果应用于主问题。”模型能够分步骤解决问题,从而得出正确答案。

**6.为大模型分配角色:**给定大模型角色,如「你是一个创意作家」「你是一个有着×年经验的 XX角色」「你是一名资深 xxx」。为大模型分配角色可以通过提升相关性的方式,提升模型回忆起优质内容的概率。

7.提示词顺序:大模型只向前读取,越靠后生成计算复杂度越高,这种工必然造成提示词内部各模块的顺序不同会带来不同生成质量。但是哪种编排的顺序更好其实没有一定之规,需要我们尝试不同的顺序来归纳,甚至可以细到不同示例之间的顺序。

五、PE核心原则

在基本原则的基础上,Prompt设计还有一些核心原则,它们是高级Prompt设计的关键所在:

1**.指令明确性(Instruction Clarity):**指令Prompting是指通过明确的任务指令引导模型执行特定操作,而不是通过提供示例。模型对指令的响应速度和准确性与指令的明确性高度相关。一个清晰的指令能够显著提升模型的输出质量。

**案例:**在为客服机器人设计对话系统时,初始Prompt为:“请帮助客户解决问题。”生成的对话无具体方向。改为:“请帮助客户重置密码,并指导他们完成操作。”此时,模型的回答变得具体且具有可操作性,大大提升了客户满意度。

**2.****自我一致性-SC(Self-Consistency):**这是一种通过多次采样生成不同输出并从中选择最佳结果的策略。它假设不同采样结果中存在一致的正确答案。通过这种方式,可以提高生成内容的一致性和准确性。

**案例:**在为产品推荐系统设计Prompt时,初始Prompt为:“请推荐五款适合学生使用的笔记本电脑。”模型生成的推荐列表存在不一致。改进为:“请多次生成五款适合学生使用的笔记本电脑,并挑选出最频繁出现的五款作为最终推荐。”这使得推荐结果更加一致且符合实际需求。

**3.链式思维-CoT(Chain-of-Thought Prompting):**CoT 的优势对于复杂的推理任务更为明显。简单任务仅从 CoT 提示中受益不多。CoT 提示主要有两种类型:

  • **Few-shot CoT**:它是用一些演示来提示模型,每个演示包含手动编写(或模型生成)的高质量推理链。
    

案例:在数学解题应用中

问题1:汤姆和伊丽莎白进行了一场爬山比赛。伊丽莎白花了30分钟爬到山顶。汤姆爬这座山花了伊丽莎白时间的四倍。汤姆爬上山顶需要多少小时?

回答1:汤姆爬山需要30*4=120分钟。

120分钟等于120/60=2小时。

所以答案是2。

问题2:杰克是一名足球运动员。他需要买两双袜子和一双足球鞋。每双袜子9.5美元,鞋子92美元。杰克有40美元。杰克还需要多少钱?

回答2:两双袜子的总费用是9.5*2=19美元。

袜子和鞋子的总费用是19+92=111美元。

杰克还需要111-40=71美元。

所以答案是71。

  • 零样本 CoT:使用自然语言语句“让我们一步步思考。”明确鼓励模型首先生成推理链,然后提示以“让我们一步一步地解决这个问题,以确保我们有正确的答案”产生答案或类似的语句。

4.少样本提示-Few-shot:利用上下文进行学习,通过在推理过程中的问题描述中提供少量示例来引导模型,从而达到更优的性能表现。

案例:在进行情感分析时,初始Prompt为:“请判断以下评论的情感。” 生成的结果不够精准。通过改用少样本提示,Prompt改为:“以下是几条评论及其对应的情感:‘电影很棒!’(正面),‘服务很差’(负面)。请判断这条评论的情感:‘产品质量非常好’。” 这种方式能够为模型提供参考,使其更准确地分析情感。

**5.思维树-ToT:**跟SC类似地先分步骤,每个步骤输出多个结果,不同点是每一步完成后,从多个结果中进行选择,再进行下一步。

**案例:**假设三位不同的专家来回答这个问题。所有专家都写下他们思考这个问题的第一个步骤,然后与大家分享。然后,所有专家都写下他们思考的下一个步骤并分享。以此类推,直到所有专家写完他们思考的所有步骤。只要大家发现有专家的步骤出错了,就让这位专家离开。请问[为什么不同地方的海水颜色不一样?]

**6.Step-Back:**引导模型在输出前先往后退一步,想想在回答这个问题之前需要先回答什么问题。

**案例:**你是一个擅长中文和英文的AI 工程师和数据科学家,擅长中文和英文相关的 AI 技术文章编写和翻译。请将下面的英文翻译成中文,要求语言生动活泼,简洁优雅。

需要翻译的英文段落:{p}

请按照以下步骤输出结果:

  1. 要想得到通顺优雅简洁的翻译文章,你需要知道哪些前提问题

  2. 这些前提问题的答案分别是什么

  3. 基于这个前提问题,对于给出英文的翻译结果

**4.可解释性(Explainability):**设计能够帮助用户理解模型推理过程的Prompt,使得生成结果更具透明性。这在涉及到决策支持和高风险任务时尤其重要。

案例:在财务报告生成系统中,初始Prompt为:“请生成公司季度财务报告。”结果生成的报告缺乏分析依据。改为:“请生成公司季度财务报告,并附上每个关键财务数据的解释和分析依据。”此时,报告不仅包含数据,还解释了数据背后的逻辑,增强了报告的可读性和可信度。

六、 PE框架

  1. ICIO框架:

指令(I):明确模型的具体任务,用简洁的语言指示,例如“将这段文字翻译成中文”。

背景信息(C):提供相关上下文,帮助模型理解任务背景和目标,以生成更准确的结果。

输入数据(I):提供执行任务所需的具体信息,如问题、文本或数据。

输出引导(O):描述预期的输出形式或风格,指导模型如何呈现结果,例如“正式信件格式”或“列出三大要点”。

案例Instruction(指令):“请撰写一篇关于人工智能在医疗领域应用的博客文章。”

Context(背景信息):“这篇文章的目标读者是对医疗科技感兴趣的技术专业人士,最近的行业趋势包括人工智能在疾病早期检测中的应用、个性化医疗方案的制定,以及基因编辑技术的最新突破。请确保内容既有深度又通俗易懂,并鼓励读者探索更多关于医疗人工智能的知识。”

Input Data(输入数据):“请参考以下三个链接作为素材:[链接1]关于AI在早期癌症检测中的研究报告,[链接2]个性化医疗方案的成功案例分析,[链接3]基因编辑技术在治疗罕见疾病中的应用研究。”

Output Indicator(输出引导):“文章应分为引言、主要技术应用(每个应用一个段落)、这些技术对医疗行业的潜在影响、结尾呼吁读者关注医疗AI发展,并包含至少两个实例图表来直观展示数据。文章长度约1000字,采用APA引用格式,语言风格严谨且具备引导性。”

  1. RASCEF框架:

角色(R):指定AI在任务中的角色或功能,设定任务的基础。

行动(A):清晰地定义AI需要完成的主要目标或工作内容。

步骤(S):列出AI在执行任务时应遵循的具体步骤或流程。

上下文(C):提供与任务相关的背景资料或环境信息,帮助AI更好地理解任务的需求。

示例(E):提供具体的实例或参考内容,以示范期望的风格、语气或方法。

格式(F):描述AI输出结果的结构或呈现形式,确保满足特定要求。

案例:**Role(角色):**作为一位经验丰富的在线教育课程设计师,你的任务是设计一个结构合理、内容丰富、并且能够激发学习兴趣的编程入门课程大纲。

**Action (行动):**设计一门针对初学者的Python编程入门课程大纲。课程应涵盖基本概念、动手实践、项目开发,并融入游戏化学习元素。

**Steps (步骤):**从基本的编程语言介绍和环境配置开始,逐步推进到数据类型、控制结构、函数、模块等核心概念。为每个模块设计相关的编程挑战和小游戏,帮助学生在实践中巩固所学内容。设计三个逐步递进的项目,分别关注数据处理、API调用、以及一个简单的图形用户界面(GUI)应用。整合每周的学习进度检查和成就徽章系统,通过社群讨论、代码分享、和协作项目来提升学习互动性。

**Context(上下文):**目标学员是希望通过自学编程进入数据分析或软件开发领域的成年人,他们可能对编程有一定的兴趣,但没有实际的编程经验。课程内容应强调实用性和循序渐进的学习体验,同时能够适应个性化的学习节奏。

**Examples (示例):**参考Khan Academy上的“Introduction to JavaScript”课程,其通过互动式的编程练习和趣味性的挑战,使学习过程既具参与感又具成就感。

**Format (格式):**课程大纲以表格形式呈现,明确列出每周主题、学习目标、推荐阅读、视频资源、实践活动和评估方法。附上一个时间线图表,展示学习路径和关键节点,确保学生能够循序渐进地掌握知识。

七、 用好PE需要具备的能力和特质及技能

掌握Prompt设计不仅仅依赖于技术本身,还需要具备特定的能力和技能:

  1. **技术敏感度:**AI训练师需要对AI技术的发展保持高度敏感,理解最新的模型架构和技术趋势,这样才能设计出符合模型特性的Prompt。

  2. **创新思维:**创新思维是Prompt设计的核心素质。通过创新,训练师能够在复杂任务中设计出独特的Prompt,解决传统方法无法应对的问题。

  3. 数据分析能力:在设计Prompt时,数据分析能力帮助训练师理解模型的输出模式,并进行有效的Prompt优化。

  4. 持续学习能力:Prompt设计是一个动态发展领域,AI训练师需要不断学习新的方法和技术,保持自己的技能和知识库的更新。

  5. **沟通与协作能力:**AI训练师常常需要与其他领域的专家合作,例如领域专家或数据科学家,沟通和协作能力是确保Prompt设计符合实际应用需求的关键。

  6. **实践经验:**Prompt设计需要通过大量实践积累经验。通过不断的试验、调整和反馈,AI训练师可以逐步掌握Prompt设计的技巧和策略,提升其设计能力。

八、结语

Prompt设计作为人工智能领域的重要技术,正在迅速发展和演变。AI训练师需要深刻理解其原理、掌握常用和核心原则,并通过不断的实践和创新,提升Prompt设计的水平。只有这样,才能在复杂多变的AI应用场景中,真正发挥Prompt设计的作用,引导模型实现最佳表现。
如何系统学习AI大模型?(附全套学习资源)

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份**全面的AI大模型学习资源**,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值