为啥Python这么火?学会这些功能,空闲时间接单你将月入上万

一、爬虫

简单来讲,爬虫就是一个探测机器,它的基本操作就是模拟人的行为去各个网站溜达,点点按钮,查查数据,或者把看到的信息背回来。就像一只虫子在一幢楼里不知疲倦地爬来爬去。Python作为一种简单的解释性语言,最适合做这种自动化的脚本工作。

大数据时代也离不开爬虫,比如在进行大数据分析或数据挖掘时,我们可以去一些比较大型的官方站点下载数据源。但这些数据源比较有限,那么如何才能获取更多更高质量的数据源呢?此时,我们可以编写自己的爬虫程序,从互联网中进行数据信息的获取。所以在未来,爬虫的地位会越来越重要。

二、论坛自动回复机器人

我相信,很多同学都在逛论坛的时候都会遇到的问题:有的帖子是标注着“回复查看更多”;或者有的论坛将回复数量和账号等级挂钩。个人感觉,这是个比较蛋疼的问题。第一,你回复帖子,需要打开论坛,再打开帖子,然后找到回复的位置,输入要回复的内容,再点击回复,虽然一顿骚操作,但是费时间又费精力。第二,有些回复帖子之间是有时间间隔的,这样就不能够快速地升级账号和被迫等待几秒到几十分钟。因此,可以用Python写一个自动回复帖子的机器人来解决上面的烦恼。

三、利用Python查看微信好友撤回的消息

针对微信操作,Python有一个十分强大的库:itchat。简单说来,itchat利用了网页版微信,它模拟了网页版微信的登录过程,所以能在网页版微信上做的事情,itchat都能做,除了朋友圈,因为朋友圈还没有开放web接口。必须保证脚本24小时运行才可以一直监视别人有没有撤回消息。

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。在这里插入图片描述

二、Python必备开发工具

在这里插入图片描述

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

六、Python练习题

检查学习结果。
在这里插入图片描述

七、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

Python资料、技术、课程、解答、咨询也可以直接点击下面名片,添加官方客服斯琪

<think>嗯,用户之前问过单进程单线程的事件循环模型,现在又接着问多Worker进程。我需要先确定他们是否已经理解了单进程的情况,然后再解释多Worker的架构。可能用户对高并发处理有更深的需求,或者在实际应用中遇到了性能问题,所以想了解如何扩展。 用户提到多Worker进程,应该是指像Nginx或Node.js集群那样的架构。我需要解释为什么需要多个Worker,以及它们是如何协作的。可能用户想知道如何利用多核CPU,或者如何提高系统的吞吐量和可靠性。 首先,得回顾一下单进程模型的限制。单进程单线程虽然高效,但无法利用多核CPU,而且一旦崩溃整个服务就挂了。这时候引入多Worker进程,可以解决这两个问题。每个Worker都是一个独立的进程,运行自己的事件循环,这样就能利用多个CPU核心,同时提高容错性。 然后,需要解释多Worker进程的工作模式。比如,主进程负责管理Worker,分配连接,Worker之间是独立的,共享监听端口,通过竞争accept来处理新连接,或者由主进程分配。可能用户会混淆进程和线程的区别,需要明确说明进程之间资源独立,而线程共享内存,但多Worker进程通常是隔离的,更安全。 还要提到进程间通信的问题,比如Worker之间如何共享数据,或者是否需要共享。比如,Redis或Session数据可能需要外部存储,而不是在进程间共享。此外,负载均衡的策略也很重要,比如Nginx使用事件驱动和多个Worker来处理连接,每个Worker处理一部分连接,提高并发能力。 可能需要举例说明,比如Nginx的配置中设置worker_processes参数,或者Node.js使用cluster模块。同时,对比多线程模型,指出多进程模型的优缺点,比如资源消耗更高,但稳定性更好。 用户可能存在的疑问是,多个Worker如何避免端口冲突,这时候需要解释SO_REUSEPORT选项,或者主进程监听端口然后分发给Worker。另外,热重启或无缝重启的实现,比如发送信号给主进程,重新加载配置而不中断服务。 最后,总结多Worker进程的优势,包括充分利用多核、隔离故障、灵活扩展等,以及适用的场景,比如高并发Web服务器。确保用户理解每个Worker仍然是单线程的事件循环,但整体上通过多进程横向扩展。</think>好的!理解“多 Worker 进程”需要结合**单线程异步模型**的局限性以及如何通过多进程架构扩展性能。以下是详细的解释: --- ### **1. 多 Worker 进程的初衷** #### **(1) 单进程模型的瓶颈** - **CPU 核心利用率低**: 单线程异步模型只能利用一个 CPU 核心(因为单线程无法并行),无法发挥多核服务器的性能。 - **容错性差**: 单进程崩溃会导致整个服务不可用。 - **资源隔离问题**: 所有任务共享同一进程资源(如内存),可能相互影响。 #### **(2) 多 Worker 进程的目标** - **横向扩展性能**: 通过启动多个 Worker 进程,每个进程绑定不同 CPU 核心,充分利用多核 CPU。 - **提高容错性**: 某个 Worker 崩溃时,其他 Worker 仍可继续服务,主进程可快速重启崩溃的 Worker。 - **资源隔离**: 每个 Worker 进程拥有独立的内存空间和事件循环,避免相互干扰。 --- ### **2. 多 Worker 进程的工作原理** #### **(1) 典型架构** - **主进程(Master)**: 负责管理 Worker 进程(如启动、监控、重启)。 通常不处理实际业务逻辑,只负责协调。 - **Worker 进程(子进程)**: 每个 Worker 是独立的进程,内部运行**单线程事件循环**(如 `epoll`/`kqueue`),处理客户端连接和 I/O 操作。 #### **(2) 核心流程** 1. **主进程启动**: - 创建监听 socket(如监听 80 端口)。 - 根据配置(如 CPU 核心数)启动多个 Worker 进程。 2. **Worker 进程工作**: - **共享监听 socket**:所有 Worker 继承主进程创建的 socket,通过 `SO_REUSEPORT` 等机制实现多进程共享同一端口。 - **事件循环**:每个 Worker 独立运行事件循环,异步处理连接。 - **负载均衡**:操作系统内核或主进程会将新连接**均衡分配**给不同 Worker(如 Linux 的 `epoll` + `SO_REUSEPORT` 支持多进程负载均衡)。 3. **连接处理**: - 当新连接到达时,操作系统内核会选择一个 Worker 进程接收连接(通过竞争锁或均衡算法)。 - 该 Worker 将连接加入自己的事件循环,后续所有读写操作由该 Worker 独立处理。 #### **(3) 代码示例(伪代码)** ```plaintext // 主进程 void master() { create_listen_socket(); // 创建监听 socket set_reuse_port(); // 设置端口复用 for (int i = 0; i < cpu_cores; i++) { fork_worker(); // 启动多个 Worker 进程 } } // Worker 进程 void worker() { epoll_fd = epoll_create(); epoll_add(listen_socket); // 监听主进程创建的 socket while (true) { events = epoll_wait(); // 事件循环 handle_events(events); // 处理连接 } } ``` --- ### **3. 关键技术与细节** #### **(1) 端口共享与负载均衡** - **`SO_REUSEPORT` 机制**(Linux 3.9+ 支持): 允许多个进程(Worker)绑定到同一端口,内核自动分配新连接给空闲 Worker。 - **惊群问题(Thundering Herd)**: 早期多进程模型中,新连接到达时所有 Worker 会被唤醒竞争锁,导致性能损耗。现代内核已优化此问题。 #### **(2) Worker 进程间通信** - **独立性**: Worker 进程间默认不共享内存(每个进程内存独立),需通过 IPC(管道、共享内存)或外部服务(如 Redis)通信。 - **无状态设计**: 业务逻辑应设计为无状态(如 HTTP 服务),避免依赖 Worker 内存中的状态。若需共享状态,需借助外部存储。 #### **(3) 热重启与优雅退出** - **热重启**: 主进程可发送信号通知旧 Worker 逐步退出,同时启动新 Worker,实现服务不中断更新。 - **优雅退出**: Worker 收到退出信号后,先完成当前请求再关闭连接,避免强制终止导致数据丢失。 --- ### **4. 多 Worker 模型的优势** | **特性** | **说明** | |------------------------|-------------------------------------------------------------------------| | **高并发性能** | 多 Worker 并行处理,充分利用多核 CPU。 | | **容错性高** | 单个 Worker 崩溃不影响整体服务,主进程可快速重启。 | | **资源隔离** | 每个 Worker 独立内存空间,避免内存泄漏或错误扩散。 | | **横向扩展灵活** | 只需增加 Worker 数量即可提升吞吐量(受限于 CPU 核心数和内存)。 | --- ### **5. 实际应用案例** #### **(1) Nginx** - **多 Worker 架构**: Nginx 默认启动多个 Worker 进程(数量通常等于 CPU 核心数)。 - **高效事件驱动**: 每个 Worker 使用 `epoll` 处理上万并发连接,整体性能随 Worker 数量线性增长。 #### **(2) Node.js Cluster 模块** - **主进程管理 Worker**: Node.js 的 `cluster` 模块允许主进程 `fork()` 多个 Worker,共享同一端口。 - **负载均衡**: 主进程通过轮询算法分配连接给 Worker。 #### **(3) Gunicorn(Python WSGI Server)** - **多 Worker 模式**: 通过预启动多个 Worker 进程处理 HTTP 请求,支持多核并发。 --- ### **6. 与多线程模型的对比** | **特性** | **多 Worker 进程** | **多线程模型** | |------------------|--------------------------------------------|----------------------------------------| | **资源开销** | 较高(每个进程独立内存) | 较低(线程共享内存) | | **容错性** | 高(进程崩溃互不影响) | 低(线程崩溃可能导致整个进程崩溃) | | **开发复杂度** | 简单(无需处理线程同步) | 复杂(需处理锁、竞态条件) | | **适用场景** | I/O 密集型服务(如 Web 服务器) | CPU 密集型任务(如科学计算) | --- ### **总结** - **多 Worker 进程**通过横向扩展多个独立进程,弥补了单线程异步模型无法利用多核 CPU 的缺陷。 - 每个 Worker 内部仍通过**单线程事件循环**实现高并发,整体架构兼具高性能和高可靠性。 - 典型应用如 Nginx、Node.js Cluster,是构建高并发服务的核心设计模式之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值