250行代码从头搭建Llama 3,GitHub一天4.6k星!Karpathy大赞

Llama系列作为为数不多的优质开源LLM,一直受到开发者们的追捧。在Hugging Face社区的文本生成模型中,几乎是「霸榜」的存在。

就在520这天,一位名叫Nishant Aklecha的开发者在推特上宣布了自己的一个开源项目,名为「从头开始实现Llama 3」。

这个项目详细到什么程度呢——

矩阵乘法、注意力头、位置编码等模块全部都拆开解释。

而且项目全部用Jupyter Notebook写成,小白都可以直接上手运行。

堪比哈佛NLP小组曾经出品的「The Annotated Transformer」。

https://nlp.seas.harvard.edu/annotated-transformer/

才一天多的时间,小哥发表的这篇推特已经有32万次阅读,甚至被Andrej Karpathy大佬亲自点赞——

「全部拆开解释之后,通过模块的嵌套以及互相调用,可以更清楚地看到模型到底做了什么。」

项目也在GitHub上获得了4.6k星。

项目地址:https://github.com/naklecha/llama3-from-scratch

那就让我们来看看作者是如何深入拆解Llama 3的。

下载并读取模型权重

首先需要从Meta官网下载模型权重文件,以便后续运行时使用。

https://github.com/meta-llama/llama3/blob/main/README.md

下载后需要先读取权重文件中的变量名:

model = torch.load("Meta-Llama-3-8B/consolidated.00.pth")  
print(json.dumps(list(model.keys())[:20], indent=4))
[  
    "tok_embeddings.weight",  
    "layers.0.attention.wq.weight",  
    "layers.0.attention.wk.weight",  
    "layers.0.attention.wv.weight",  
    "layers.0.attention.wo.weight",  
    "layers.0.feed_forward.w1.weight",  
    "layers.0.feed_forward.w3.weight",  
    "layers.0.feed_forward.w2.weight",  
    "layers.0.attention_norm.weight",  
    "layers.0.ffn_norm.weight",  
    "layers.1.attention.wq.weight",  
    "layers.1.attention.wk.weight",  
    "layers.1.attention.wv.weight",  
    "layers.1.attention.wo.weight",  
    "layers.1.feed_forward.w1.weight",  
    "layers.1.feed_forward.w3.weight",  
    "layers.1.feed_forward.w2.weight",  
    "layers.1.attention_norm.weight",  
    "layers.1.ffn_norm.weight",  
    "layers.2.attention.wq.weight"  
]

以及模型的配置信息:

with open("Meta-Llama-3-8B/params.json", "r") as f:  
    config = json.load(f)  
config
{'dim': 4096,  
 'n_layers': 32,  
 'n_heads': 32,  
 'n_kv_heads': 8,  
 'vocab_size': 128256,  
 'multiple_of': 1024,  
 'ffn_dim_multiplier': 1.3,  
 'norm_eps': 1e-05,  
 'rope_theta': 500000.0}

根据以上输出,可以推断出模型架构的信息——

  • 32个transformer层

  • 每个多头注意力模块有32个注意力头

  • 分词器的词汇量为128256

直接将模型配置信息存储到变量中,方便使用。

dim = config["dim"]``n_layers = config["n_layers"]``n_heads = config["n_heads"]``n_kv_heads = config["n_kv_heads"]``vocab_size = config["vocab_size"]``multiple_of = config["multiple_of"]``ffn_dim_multiplier = config["ffn_dim_multiplier"]``norm_eps = config["norm_eps"]``rope_theta = torch.tensor(config["rope_theta"])

分词器与编码

那么就从语言模型的第一步——分词器开始,但是这一步并不需要我们自己手写。

Llama 3使用了GPT等大模型常用的BPE分词器,karpathy大佬之前就复现过一个最简版。

https://github.com/karpathy/minbpe

除了Karapthy大佬复现的版本,OpenAI也开源了一个运行速度很快的分词器tiktoken。这两个随便挑,估计都比自己从头训练的要强。

https://github.com/openai/tiktoken

有了分词器,下一步就是要把输入的文本切分为token。

prompt = "the answer to the ultimate question of life, the universe, and everything is "``tokens = [128000] + tokenizer.encode(prompt)``print(tokens)``tokens = torch.tensor(tokens)``prompt_split_as_tokens = [tokenizer.decode([token.item()]) for token in tokens]``print(prompt_split_as_tokens)
[128000, 1820, 4320, 311, 279, 17139, 3488, 315, 2324, 11, 279, 15861, 11, 323, 4395, 374, 220]``['<|begin_of_text|>', 'the', ' answer', ' to', ' the', ' ultimate', ' question', ' of', ' life', ',', ' the', ' universe', ',', ' and', ' everything', ' is', ' ']

再使用PyTorch内置的神经网络模块(torch.nn)将token转换为embedding,[17x1]的token维度变为[17x4096]。

embedding_layer = torch.nn.Embedding(vocab_size, dim)``embedding_layer.weight.data.copy_(model["tok_embeddings.weight"])``token_embeddings_unnormalized = embedding_layer(tokens).to(torch.bfloat16)``token_embeddings_unnormalized.shape
torch.Size([17, 4096])

此处应该是整个项目中唯一使用PyTorch内置模块的地方。而且,作者给出了温馨提示——记得经常打印一下张量维度,更容易理解。

之后再使用RMS对embedding进行归一化处理。这一步不会改变张量形状,只是归一化其中的数值,公式如下:

模型配置中的norm_eps变量设置为1e-5,就是用在此处,防止rms值意外设置为0。

# def rms_norm(tensor, norm_weights):``#     rms = (tensor.pow(2).mean(-1, keepdim=True) + norm_eps)**0.5``#     return tensor * (norm_weights / rms)``def rms_norm(tensor, norm_weights):`    `return (tensor * torch.rsqrt(tensor.pow(2).mean(-1, keepdim=True) + norm_eps)) * norm_weights

构建Transformer层

每一个Transformer层都需要经过如下步骤:

由于是从头构建,我们只需要访问模型字典中第一层(layer.0)的权重。

先用刚才定义的rms_norm函数,结合模型权重,进行embedding的归一化处理。

token_embeddings = rms_norm(token_embeddings_unnormalized, model["layers.0.attention_norm.weight"])``token_embeddings.shape
torch.Size([17, 4096])

多头注意力

查询向量

让我们先用一张图复习注意力机制的计算过程:

如果从模型直接加载查询、键、值和输出的权重,我们会得到四个二维矩阵,形状分别为 [4096x4096]、[1024x4096]、[1024x4096]、[4096x4096]。

print(`    `model["layers.0.attention.wq.weight"].shape,`    `model["layers.0.attention.wk.weight"].shape,`    `model["layers.0.attention.wv.weight"].shape,`    `model["layers.0.attention.wo.weight"].shape``)
torch.Size([4096, 4096]) torch.Size([1024, 4096]) torch.Size([1024, 4096]) torch.Size([4096, 4096])

因为大模型考虑了注意力中乘法并行化的需求,压缩了矩阵维度。但是为了更清楚地展示机制,作者决定将这些矩阵都展开。

模型有32个注意力头,因此查询权重矩阵应该展开为[32x128x4096],其中128是查询向量的长度,4096是embedding的维度。

q_layer0 = model["layers.0.attention.wq.weight"]``head_dim = q_layer0.shape[0] // n_heads``q_layer0 = q_layer0.view(n_heads, head_dim, dim)``q_layer0.shape
torch.Size([32, 128, 4096])

于是可以访问第一个注意力头的查询权重,维度是[128x4096]。

q_layer0_head0 = q_layer0[0]``q_layer0_head0.shape
torch.Size([128, 4096])

现在将查询权重与embedding相乘,就得到了查询矩阵,维度为[17x128],表示长度为17的句子,其中每个token都有维度为128的查询向量。

q_per_token = torch.matmul(token_embeddings, q_layer0_head0.T)``q_per_token.shape
torch.Size([17, 128])
位置编码

由于注意力机制中对每个token没有序列「位置」的概念,第一个词和最后一个词在Q、K、V矩阵看来都是一样的,因此需要在查询向量中嵌入维度为[1x128]的位置编码。

位置编码有多种方法,Llama模型采用的是旋转位置编码(RoPE)。

首先将查询向量两两分为一对,共有64对。

q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)``q_per_token_split_into_pairs.shape
torch.Size([17, 64, 2])

句子中在m位置的一对查询向量,旋转角度为m*(rope_theta),其中rope_theta也在模型的配置信息中。

zero_to_one_split_into_64_parts = torch.tensor(range(64))/64``zero_to_one_split_into_64_parts
tensor([0.0000, 0.0156, 0.0312, 0.0469, 0.0625, 0.0781, 0.0938, 0.1094, 0.1250,`        `0.1406, 0.1562, 0.1719, 0.1875, 0.2031, 0.2188, 0.2344, 0.2500, 0.2656,`        `0.2812, 0.2969, 0.3125, 0.3281, 0.3438, 0.3594, 0.3750, 0.3906, 0.4062,`        `0.4219, 0.4375, 0.4531, 0.4688, 0.4844, 0.5000, 0.5156, 0.5312, 0.5469,`        `0.5625, 0.5781, 0.5938, 0.6094, 0.6250, 0.6406, 0.6562, 0.6719, 0.6875,`        `0.7031, 0.7188, 0.7344, 0.7500, 0.7656, 0.7812, 0.7969, 0.8125, 0.8281,`        `0.8438, 0.8594, 0.8750, 0.8906, 0.9062, 0.9219, 0.9375, 0.9531, 0.9688,`        `0.9844])
freqs = 1.0 / (rope_theta ** zero_to_one_split_into_64_parts)``freqs
tensor([1.0000e+00, 8.1462e-01, 6.6360e-01, 5.4058e-01, 4.4037e-01, 3.5873e-01,`        `2.9223e-01, 2.3805e-01, 1.9392e-01, 1.5797e-01, 1.2869e-01, 1.0483e-01,`        `8.5397e-02, 6.9566e-02, 5.6670e-02, 4.6164e-02, 3.7606e-02, 3.0635e-02,`        `2.4955e-02, 2.0329e-02, 1.6560e-02, 1.3490e-02, 1.0990e-02, 8.9523e-03,`        `7.2927e-03, 5.9407e-03, 4.8394e-03, 3.9423e-03, 3.2114e-03, 2.6161e-03,`        `2.1311e-03, 1.7360e-03, 1.4142e-03, 1.1520e-03, 9.3847e-04, 7.6450e-04,`        `6.2277e-04, 5.0732e-04, 4.1327e-04, 3.3666e-04, 2.7425e-04, 2.2341e-04,`        `1.8199e-04, 1.4825e-04, 1.2077e-04, 9.8381e-05, 8.0143e-05, 6.5286e-05,`        `5.3183e-05, 4.3324e-05, 3.5292e-05, 2.8750e-05, 2.3420e-05, 1.9078e-05,`        `1.5542e-05, 1.2660e-05, 1.0313e-05, 8.4015e-06, 6.8440e-06, 5.5752e-06,`        `4.5417e-06, 3.6997e-06, 3.0139e-06, 2.4551e-06])
freqs_for_each_token = torch.outer(torch.arange(17), freqs)``freqs_cis = torch.polar(torch.ones_like(freqs_for_each_token), freqs_for_each_token)

经过以上操作后,我们构建了freq_cis矩阵,存储句子中每个位置的、对查询向量每个值的旋转角度。

将每对查询向量转换为复数,之后进行与旋转角度进行点积操作。

q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)``q_per_token_as_complex_numbers.shape
torch.Size([17, 64])
q_per_token_as_complex_numbers_rotated = q_per_token_as_complex_numbers * freqs_cis``q_per_token_as_complex_numbers_rotated.shape
torch.Size([17, 64])

这样我们就得到了旋转后的查询向量,需要再转换回实数形式。

q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers_rotated)``q_per_token_split_into_pairs_rotated.shape
torch.Size([17, 64, 2])
q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)``q_per_token_rotated.shape
torch.Size([17, 128])

旋转后的查询向量,维度依旧是 [17x128]。

键向量

键向量的计算与查询向量非常类似,也需要进行旋转位置编码,只是维度有所差异。

键的权重数量仅为查询的1/4,因为需要减少模型计算量,每个权重值被4个注意力头共享。

k_layer0 = model["layers.0.attention.wk.weight"]``k_layer0 = k_layer0.view(n_kv_heads, k_layer0.shape[0] // n_kv_heads, dim)``k_layer0.shape
torch.Size([8, 128, 4096])

因此这里第一个维度的值为8,而不是我们在查询权重中看到的32。

k_layer0_head0 = k_layer0[0]``k_per_token = torch.matmul(token_embeddings, k_layer0_head0.T)``k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)``k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)``k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)``k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)``k_per_token_rotated.shape
torch.Size([17, 128])

照着前面查询向量部分的计算流程,就可以得到句子中每个token的键向量了。

查询和键相乘

对句子进行「自注意力」的过程,就是将查询向量和键向量相乘,得到的QK矩阵中的每个值描述了对应位置token查询值和键值的相关程度。

相乘后,我们会得到一个维度为[17x17]自注意力矩阵。

qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(head_dim)**0.5``qk_per_token.shape
torch.Size([17, 17])
掩码

语言模型的学习目标,是根据句子之前的内容预测下一个token,因此训练和推理时需要将token位置之后的QK分数屏蔽。

值向量

值权重数量和键权重一样,都是在4个注意力头之间共享(以节省计算量)。

v_layer0 = model["layers.0.attention.wv.weight"]``v_layer0 = v_layer0.view(n_kv_heads, v_layer0.shape[0] // n_kv_heads, dim)``v_layer0.shape
torch.Size([8, 128, 4096])

之后我们获取第一层第一个注意力头的值权重,与句子embedding相乘,获取值向量。

v_layer0_head0 = v_layer0[0]``v_per_token = torch.matmul(token_embeddings, v_layer0_head0.T)``v_per_token.shape
torch.Size([17, 128])
注意力向量

将进行过掩码的QK矩阵和句子的值向量相乘,就得到了注意力矩阵,维度为[17x128]。

qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)``qkv_attention.shape
torch.Size([17, 128])
多头注意力

以上得到的注意力矩阵,是第一层第一个注意力头的计算结果。

接下来需要运行一个循环,对第一层中所有32个注意力头进行上述运算过程。

qkv_attention_store = []``   ``for head in range(n_heads):`    `q_layer0_head = q_layer0[head]`    `k_layer0_head = k_layer0[head//4] # key weights are shared across 4 heads`    `v_layer0_head = v_layer0[head//4] # value weights are shared across 4 heads`    `q_per_token = torch.matmul(token_embeddings, q_layer0_head.T)`    `k_per_token = torch.matmul(token_embeddings, k_layer0_head.T)`    `v_per_token = torch.matmul(token_embeddings, v_layer0_head.T)``   `    `q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)`    `q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)`    `q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis[:len(tokens)])`    `q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)``   `    `k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)`    `k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)`    `k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis[:len(tokens)])`    `k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)``   `    `qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5`    `mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)`    `mask = torch.triu(mask, diagonal=1)`    `qk_per_token_after_masking = qk_per_token + mask`    `qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)`    `qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)`    `qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)`    `qkv_attention_store.append(qkv_attention)``   ``len(qkv_attention_store)
32

为了并行计算的方便,我们需要把上面展开的矩阵压缩回去。

也就是将32个维度为[17x128]的注意力矩阵,压缩成一个维度为[17x4096]的大矩阵。

stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)``stacked_qkv_attention.shape
torch.Size([17, 4096])

最后,别忘了乘以输出权重矩阵。

w_layer0 = model["layers.0.attention.wo.weight"]``w_layer0.shape``# torch.Size([4096, 4096])``embedding_delta = torch.matmul(stacked_qkv_attention, w_layer0.T)``embedding_delta.shape
torch.Size([17, 4096])

至此,注意力模块的计算就结束了。

相加与归一化

对照这张Transformer层的架构图,在多头自注意力模块之后还需要完成一些运算。

首先将注意力模块的输出与原始的embedding相加。

embedding_after_edit = token_embeddings_unnormalized + embedding_delta``embedding_after_edit.shape
torch.Size([17, 4096])

之后进行RMS归一化。

embedding_after_edit_normalized = rms_norm(embedding_after_edit, model["layers.0.ffn_norm.weight"])``embedding_after_edit_normalized.shape
torch.Size([17, 4096])

前馈神经网络层

Llama 3的Transformer层中使用了SwiGLU前馈网络,这种架构非常擅长在必要情况下为模型添加非线性,这也是当今LLM中的常见操作。

SwiGLU与Vanilla两种前馈神经网络架构的对比

于是我们从模型中加载前馈网络的权重,并按照公式计算:

w1 = model["layers.0.feed_forward.w1.weight"]``w2 = model["layers.0.feed_forward.w2.weight"]``w3 = model["layers.0.feed_forward.w3.weight"]``output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)``output_after_feedforward.shape
torch.Size([17, 4096])

别忘了前馈层之后还有一次相加。

layer_0_embedding = embedding_after_edit+output_after_feedforward``layer_0_embedding.shape
torch.Size([17, 4096])

以上就是一个完整Transformer层的实现,最终输出的向量维度为[17x4096],相当于为句子中每个token重新计算了一个长度为4096的embedding向量。

预测下一个输出

之后的每一个Transformer层都会编码出越来越复杂的查询,直到最后一层的输出的embedding可以预测句子下一个token。

因此需要再嵌套一个外层循环,将Transformer层的流程重复32次。

final_embedding = token_embeddings_unnormalized``for layer in range(n_layers):`    `qkv_attention_store = []`    `layer_embedding_norm = rms_norm(final_embedding, model[f"layers.{layer}.attention_norm.weight"])`    `q_layer = model[f"layers.{layer}.attention.wq.weight"]`    `q_layer = q_layer.view(n_heads, q_layer.shape[0] // n_heads, dim)`    `k_layer = model[f"layers.{layer}.attention.wk.weight"]`    `k_layer = k_layer.view(n_kv_heads, k_layer.shape[0] // n_kv_heads, dim)`    `v_layer = model[f"layers.{layer}.attention.wv.weight"]`    `v_layer = v_layer.view(n_kv_heads, v_layer.shape[0] // n_kv_heads, dim)`    `w_layer = model[f"layers.{layer}.attention.wo.weight"]`    `for head in range(n_heads):`        `q_layer_head = q_layer[head]`        `k_layer_head = k_layer[head//4]`        `v_layer_head = v_layer[head//4]`        `q_per_token = torch.matmul(layer_embedding_norm, q_layer_head.T)`        `k_per_token = torch.matmul(layer_embedding_norm, k_layer_head.T)`        `v_per_token = torch.matmul(layer_embedding_norm, v_layer_head.T)`        `q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)`        `q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)`        `q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis)`        `q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)`        `k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)`        `k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)`        `k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)`        `k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)`        `qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5`        `mask = torch.full((len(token_embeddings_unnormalized), len(token_embeddings_unnormalized)), float("-inf"))`        `mask = torch.triu(mask, diagonal=1)`        `qk_per_token_after_masking = qk_per_token + mask`        `qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)`        `qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)`        `qkv_attention_store.append(qkv_attention)``   `    `stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)`    `w_layer = model[f"layers.{layer}.attention.wo.weight"]`    `embedding_delta = torch.matmul(stacked_qkv_attention, w_layer.T)`    `embedding_after_edit = final_embedding + embedding_delta`    `embedding_after_edit_normalized = rms_norm(embedding_after_edit, model[f"layers.{layer}.ffn_norm.weight"])`    `w1 = model[f"layers.{layer}.feed_forward.w1.weight"]`    `w2 = model[f"layers.{layer}.feed_forward.w2.weight"]`    `w3 = model[f"layers.{layer}.feed_forward.w3.weight"]`    `output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)`    `final_embedding = embedding_after_edit+output_after_feedforward

最后一个Transformer层的输出维度与第一层相同,依旧是[17x4096]。

final_embedding = rms_norm(final_embedding, model["norm.weight"])``final_embedding.shape
torch.Size([17, 4096])

此时需要利用输出解码器,将最后一层输出的embedding先进行归一化处理,再转换为token。

final_embedding = rms_norm(final_embedding, model["norm.weight"])``final_embedding.shape``# torch.Size([17, 4096])
model["output.weight"].shape``# torch.Size([128256, 4096])
logits = torch.matmul(final_embedding[-1], model["output.weight"].T)``logits.shape
torch.Size([128256])

输出的向量维度与分词器中词汇数量相同,每个值代表了下一个token的预测概率。

模型预测下一个词是42?

和《银河系漫游指南》的梦幻联动(不知道是不是作者故意设置成这样的)

next_token = torch.argmax(logits, dim=-1)``next_token
tensor(2983)
tokenizer.decode([next_token.item()])
'42'

至此,我们就完成了Llama 3对输入句子进行下一个token预测的全过程。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 21
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值