前言
今天给大家分享最新开源的一款ASR模型Moonshine, 据官方介绍,比whisper同等级规模的参数版本识别速度更快,准确率更高! 本文将准备多个案例进行实测ASR效果,仅供参考。下面进入今天的主题~
本文目录
-
moonshine模型介绍
-
moonshine性能介绍
-
实战篇:下载moonshine模型权重&&步骤代码进行语音识别
-
使用 onnxruntime 包来运行 Moonshine 模型,不依赖torch
-
使用huggingface框架加载moonshine模型进行asr语音识别
-
效果篇: moonshine-base模型 VS whisper-base模型ASR效果对比
-
案例1: 短文本语音识别-2种模型效果展示
-
案例2: TED演讲视频-2种模型效果展示
moonshine模型介绍
Moonshine 是由 Useful Sensors公司推出开源的语音到文本(speech-to-text, STT)转换模型,旨在为资源受限设备提供快速而准确的自动语音识别(ASR)服务。Moonshine 基于先进的编码器-解码器架构,采用了Transformer模型。其编码器部分负责处理输入的语音信号,而解码器部分则生成文本输出。目前在gitihub社区点赞量达2k!Moonshine模型具有以下特点:
-
开源tiny版本,参数量:27 M, 只支持英文语言; 开源base版本,参数量:61 M, 只支持英文语言;
-
更快的处理速度,Moonshine 的处理速度比 Whisper 快 1.7 倍。对于 10 秒的短音频片段,处理速度可达 Whisper 的五倍。
-
基于20w小时的语音样本训练而来。
moonshine性能介绍
Moonshine 在多个维度上超越了现有的语音识别解决方案,特别是在处理速度和准确度方面。据官方报告,Moonshine 的处理速度「比 OpenAI 的 Whisper 快五倍」,并且在词错误率方面也表现得更好,如下图所示。这种显著的优势使得 Moonshine 成为资源受限环境下语音识别的理想选择。
下面我将给大家实操部署moonshine-base模型和whisper-base模型,准备几个案例来实际展示具体的语音识别效果,仅供参考~
实战篇:下载moonshine模型权重&&步骤代码进行语音识别
使用 onnxruntime 包来运行 Moonshine 模型,不依赖torch
from IPython.display import clear_output !pip install moonshine !git clone https://github.com/usefulsensors/moonshine.git !pip install silero_vad onnxruntime sounddevice tokenizers einops !pip install onnxruntime-gpu
下载模型权重
!huggingface-cli download UsefulSensors/moonshine --local-dir . --local-dir-use-symlinks False clear_output()
加载moonshine模型onnx格式权重进行推理
model = MoonshineOnnxModel(models_dir= "./onnx/base") def moonshine_infer(wav_file): with wave.open(wav_file) as f: params = f.getparams() assert ( params.nchannels == 1 and params.framerate == 16_000 and params.sampwidth == 2 ), f"wave file should have 1 channel, 16KHz, and int16" audio = f.readframes(params.nframes) audio = np.frombuffer(audio, np.int16) / 32768.0 audio = audio.astype(np.float32)[None, ...] tokens = model.generate(audio) tokenizer = tokenizers.Tokenizer.from_file("./moonshine/assets/tokenizer.json") text = tokenizer.decode_batch(tokens) return text
进行模型推理
使用huggingface框架加载moonshine模型进行asr语音识别
%%time %cd /kaggle/working/moonshine from IPython.display import clear_output from transformers import AutoModelForSpeechSeq2Seq, AutoConfig, PreTrainedTokenizerFast import torchaudio import torch import sys device = "cuda:0" if torch.cuda.is_available() else "cpu" # 'usefulsensors/moonshine-base' for the base model moonshine = AutoModelForSpeechSeq2Seq.from_pretrained('usefulsensors/moonshine-base', trust_remote_code=True) tokenizer = PreTrainedTokenizerFast.from_pretrained('usefulsensors/moonshine-base') audio, sr = torchaudio.load("moonshine/assets/beckett.wav") if sr != 16000: audio = torchaudio.functional.resample(audio, sr, 16000) tokens = moonshine(audio) print(tokenizer.decode(tokens[0], skip_special_tokens=True))
下面我将利用moonshine-base版本和whisper-base版本的模型进行语音识别效果对比,看具体实际案例情况下,模型的具体表现情况,随便找的素材,经供参考~
效果篇: moonshine-base模型 VS whisper-base模型ASR效果对比
案例1: 短文本语音识别-2种模型效果展示
参考音频1效果展示:
moonshine-base的ASR效果展示
识别结果: Ever tried ever failed, no matter try again fail again fail better.
whisper-base的ASR效果展示
2种模型识别结果都非常正确,而moonshine-base速度很快,只用来不到0.6秒,即便算上模型加载的时间,也才1.2秒。
案例2: TED演讲视频-2种模型效果展示
随便找一份英语的演讲视频进行测试,我这个找到https://www.youtube.com/playlist?list=PLosaC3gb0kGDUYoRq-VioWOZ5Ke0UIoSE,截取前2分钟的视频转化为音频效果如下:
moonshine-base的ASR效果展示
单次不支持长语音识别,采用分段识别,代码如下:
import librosa import os import moonshine import soundfile as sf # !mkdir temp def benchmark(audio_pth): # 读取音频文件 audio, sr = torchaudio.load("english.wav") if sr != 16000: audio = torchaudio.functional.resample(audio, sr, 16000) # 分割音频文件成小段 chunk_duration = 10 # 每个片段的长度(秒) chunk_size = int(chunk_duration * sr) chunks = [audio[0:1,i:i + chunk_size] for i in range(0, audio.shape[1], chunk_size)] # 转录音频 transcription = "" for i, chunk in enumerate(chunks): print(f"正在转录... ({i + 1}/{len(chunks)})") tokens = moonshine_model(chunk) chunk_transcription = tokenizer.decode(tokens[0], skip_special_tokens=True) if isinstance(chunk_transcription, list): chunk_transcription = ' '.join(chunk_transcription) transcription += chunk_transcription return transcription
最后识别的结果如下:
whisper-base的ASR效果展示
我感觉2个模型识别的效果相差不大,moonshine速度是比较快的,但是目前moonshine只支持英文。大家可以对比录音听听,看看谁识别的更准~
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。