最近写代码有了好的助手cursor,大部分的轮子代码我都是让它帮我写,我主要是python,但是我用cursor帮媳妇写java和前端,哈哈,完全能hold住,但是有个问题,国内没有梯子使用cursor不太友好,而且cursor还要花钱,本着开源至上(白嫖_),最近发现了一个效果很不错的大模型,这里推荐给大家。
1、模型介绍
开源“强大”、“多样”、“实用”的Qwen2.5-Coder系列(原CodeQwen1.5),致力于不断推动Open CodeLLM的发展。
💻功能强大:Qwen2.5-Coder-32B-Instruct已成为当前SOTA开源代码模型,匹配GPT-4o的编码能力。在展现出强大而全面的编码能力的同时,还具备良好的综合能力和数学能力;
📚 多样化:在之前开源的 1.5B / 7B 两种尺寸的基础上,本次发布带来了 0.5B / 3B / 14B / 32B 等四种模型尺寸。截至目前,Qwen2.5-Coder已覆盖六种主流模型尺寸,满足不同开发者的需求;
🛠 实用性:我们探讨了 Qwen2.5-Coder 在代码助手和 Artifacts 两个场景中的实用性,并通过一些示例展示了 Qwen2.5-Coder 在实际场景中的潜在应用;
2、特点
-
✨ 支持长上下文理解和生成,上下文长度为 128K token;
-
✨ 支持92种编码语言;
['ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bluespec', 'c', 'c#', 'c++', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir', 'elm', 'emacs-lisp', 'erlang', 'f#', 'fortran', 'glsl', 'go', 'groovy', 'haskell', 'html', 'idris', 'isabelle', 'java', 'java-server-pages', 'javascript', 'json', 'julia', 'jupyter-notebook', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell', 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'objectc++', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog', 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme', 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'swift', 'systemverilog', 'tcl', 'tcsh', 'tex', 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'vue', 'xslt', 'yacc', 'yaml', 'zig']
- ✨ 保留基础模型的数学优势和一般能力
模型开源了很多版本,还有量化版本,本部署非常方便,为了方便使用,也可以直接去官方部署的网址去试用,地址在最下方
3、这里我们不讲部署,只讲使用效果,直接在官方使用很方便
1、界面
直接点击【代码模式】进行编码
2、页面默认带了很多例子,可以参考学习
3、我们测试一个 【太阳系运行图】
点击【同款指令】,指令会自动填充到输入框
创建一个动态的太阳系模型,展示太阳和围绕它运行的行星,包括水星、金星、``地球、火星、木星、土星、天王星和海王星。每个行星应有自己的轨道和自转``动画。地球应有一个围绕它运行的月球。背景为一个包含星星的深色空间,``星星应具有不同的透明度和大小。
点击提交开始写代码,并且会展示预览效果
点击预览 【这里是截图,其实是有动态效果的】
4、不用例子,自己写一个需求
【帮我写一个h5页面,要求页面有能填入个人信息,点击提交后信息提交后台,返回注册成功】
哈哈,10几秒写完,看看效果
代码
预览
提交了一下,没有写模拟提交后返回注册成功js弹窗的代码,继续让他修改
看看效果
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。